Artificial Intelligence for the Detection of Diabetic Retinopathy

被引:0
作者
Beuse, Ansgar [1 ]
Grohmann, Carsten [1 ]
Schadwinkel, Hauke M. [1 ]
Skevas, Christos [1 ]
Spitzer, Martin S. [1 ]
机构
[1] Univ Klinikum Hamburg Eppendorf, Klin & Poliklin Augenheilkunde, Martinistr 52,W40, D-20246 Hamburg, Germany
关键词
history of medicine; retina; information technology; AI; diabetic retinopathy; DEEP LEARNING ALGORITHM; VALIDATION; DISEASES; RISK; PREDICTION;
D O I
10.1055/a-2545-1192
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Screening and timely treatment can avoid the majority of severe vision loss and blindness from diabetic retinopathy. Artificial intelligence (AI) algorithms that detect DR from retinal photographs without human assessment might reduce the challenges of systematic screening. The German National Care Guideline recommends that individuals with diabetes receive annual or biennial eye examinations to detect treatable DR. Efficient and comprehensive screening of the growing diabetic population requires more and more resources. Artificial intelligence (AI) algorithms that detect DR from retinal photographs without human assessment might help in coping with the immense screening burden. Many of these AI algorithms have achieved good sensitivity and specificity for detecting treatable DR, as compared to human graders; however, many important challenges remain, such as acceptance, cost-effectiveness, liability issues, IT security, and reimbursement. AI-supported DR screening has so far only been used to a limited extent, even in countries with a developed digital infrastructure. These questions must be addressed before AI-based DR screening can be implemented on a large scale into clinical practice. This overview presents key concepts in development and currently approved AI applications for DR screening.
引用
收藏
页数:9
相关论文
共 53 条
[1]   Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices [J].
Abramoff, Michael D. ;
Lavin, Philip T. ;
Birch, Michele ;
Shah, Nilay ;
Folk, James C. .
NPJ DIGITAL MEDICINE, 2018, 1
[2]  
[Anonymous], Art. 22 DSGVO: Automatisierte Entscheidungen im Einzelfall einschlielich Profiling
[3]  
Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften, Nationale VersorgungsLeitlinie (NVL) Typ-2-Diabetes. 15.05.2023. Langfassung Version 3.0. AWMF-Register-Nr. nvl-001
[4]   Deep learning algorithm predicts diabetic retinopathy progression in individual patients [J].
Arcadu, Filippo ;
Benmansour, Fethallah ;
Maunz, Andreas ;
Willis, Jeff ;
Haskova, Zdenka ;
Prunotto, Marco .
NPJ DIGITAL MEDICINE, 2019, 2 (1)
[5]   Feasibility and Clinical Utility of Wide-Field Optical Coherence Tomography Angiography Compared to Ultrawide-Field Fluorescein Angiography in Patients with Diabetic Retinopathy [J].
Bajka, Anahita ;
Bacci, Tommaso ;
Wiest, Maximilian Robert Justus ;
Brinkmann, Max ;
Hamann, Timothy ;
Toro, Mario ;
Zweifel, Sandrine Anne .
KLINISCHE MONATSBLATTER FUR AUGENHEILKUNDE, 2023, 240 (04) :490-495
[6]   Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study [J].
Bellemo, Valentina ;
Lim, Zhan W. ;
Lim, Gilbert ;
Nguyen, Quang D. ;
Xie, Yuchen ;
Yip, Michelle Y. T. ;
Hamzah, Haslina ;
Ho, Jinyi ;
Lee, Xin Q. ;
Hsu, Wynne ;
Lee, Mong L. ;
Musonda, Lillian ;
Chandran, Manju ;
Chipalo-Mutati, Grace ;
Muma, Mulenga ;
Tan, Gavin S. W. ;
Sivaprasad, Sobha ;
Menon, Geeta ;
Wong, Tien Y. ;
Ting, Daniel S. W. .
LANCET DIGITAL HEALTH, 2019, 1 (01) :E35-E44
[7]   Diabetic macular edema: Evidence-based management [J].
Browning, David J. ;
Stewart, Michael W. ;
Lee, Chong .
INDIAN JOURNAL OF OPHTHALMOLOGY, 2018, 66 (12) :1736-1750
[8]   Bridging the "last mile" gap between AI implementation and operation: "data awareness" that matters [J].
Cabitza, Federico ;
Campagner, Andrea ;
Balsano, Clara .
ANNALS OF TRANSLATIONAL MEDICINE, 2020, 8 (07)
[9]   Type 2 Diabetes as a Risk Factor for Dementia in Women Compared With Men: A Pooled Analysis of 2.3 Million People Comprising More Than 100,000 Cases of Dementia [J].
Chatterjee, Saion ;
Peters, Sanne A. E. ;
Woodward, Mark ;
Mejia Arango, Silvia ;
Batty, G. David ;
Beckett, Nigel ;
Beiser, Alexa ;
Borenstein, Amy R. ;
Crane, Paul K. ;
Haan, Mary ;
Hassing, Linda B. ;
Hayden, Kathleen M. ;
Kiyohara, Yutaka ;
Larson, Eric B. ;
Li, Chung-Yi ;
Ninomiya, Toshiharu ;
Ohara, Tomoyuki ;
Peters, Ruth ;
Russ, Tom C. ;
Seshadri, Sudha ;
Strand, Bjorn H. ;
Walker, Rod ;
Xu, Weili ;
Huxley, Rachel R. .
DIABETES CARE, 2016, 39 (02) :300-307
[10]   Retinal Microperimetry: A New Tool for Identifying Patients With Type 2 Diabetes at Risk for Developing Alzheimer Disease [J].
Ciudin, Andreea ;
Simo-Servat, Olga ;
Hernandez, Cristina ;
Arcos, Gabriel ;
Diego, Susana ;
Sanabria, Angela ;
Sotolongo, Oscar ;
Hernandez, Isabel ;
Boada, Merce ;
Simo, Rafael .
DIABETES, 2017, 66 (12) :3098-3104