Basis-functions nonlinear data-enabled predictive control: Consistent and computationally efficient formulations

被引:2
作者
Lazar, M. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Elect Engn, Eindhoven, Netherlands
来源
2024 EUROPEAN CONTROL CONFERENCE, ECC 2024 | 2024年
关键词
D O I
10.23919/ECC64448.2024.10591192
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the extension of data-enabled predictive control (DeePC) to nonlinear systems via general basis functions. Firstly, we formulate a basis-functions DeePC behavioral predictor and identify necessary and sufficient conditions for equivalence with a corresponding basis-functions multi-step identified predictor. The derived conditions yield a dynamic regularization cost function that enables a well-posed (i.e., consistent with the multi-step identified predictor) basis-functions formulation of nonlinear DeePC. Secondly, we develop two alternative, computationally efficient basis-functions DeePC formulations that use a simpler, sparse regularization cost function and ridge regression, respectively. An insightful relation between Koopman DeePC and basis-functions DeePC is also presented. The effectiveness of the developed basis-functions DeePC formulations is shown on a benchmark nonlinear pendulum state-space model, for both noise-free and noisy data, while using only output measurements.
引用
收藏
页码:888 / 893
页数:6
相关论文
共 19 条
[1]   Data-driven nonlinear predictive control for feedback linearizable systems [J].
Alsalti, Mohammad ;
Lopez, Victor G. ;
Berberich, Julian ;
Allgoewer, Frank ;
Mueller, Matthias A. .
IFAC PAPERSONLINE, 2023, 56 (02) :617-624
[2]  
[Anonymous], robot cleaning system: State and parameter estimation. Au
[3]   Linear Tracking MPC for Nonlinear Systems-Part II: The Data-Driven Case [J].
Berberich, Julian ;
Koehler, Johannes ;
Mueller, Matthias A. ;
Allgoewer, Frank .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (09) :4406-4421
[4]   A trajectory-based framework for data-driven system analysis and control [J].
Berberich, Julian ;
Allgower, Frank .
2020 EUROPEAN CONTROL CONFERENCE (ECC 2020), 2020, :1365-1370
[5]  
Coulson J, 2019, 2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), P307, DOI [10.23919/ecc.2019.8795639, 10.23919/ECC.2019.8795639]
[6]   Deep prediction networks [J].
Dalla Libera, Alberto ;
Pillonetto, Gianluigi .
NEUROCOMPUTING, 2022, 469 :321-329
[7]  
Dorfler F., 2022, IEEE Transactions on Automatic Control
[8]  
Favoreel W., 1999, Proceedings of the 14th World Congress. International Federation of Automatic Control, P235
[9]  
Fazzi A., 2023, arXiv, V2304.02930
[10]  
Fiedler F, 2021, 2021 EUROPEAN CONTROL CONFERENCE (ECC), P222, DOI 10.23919/ECC54610.0000/2021.9654975