Mild solutions for conformable fractional order functional evolution equations via Meir-Keeler type fixed point theorem

被引:0
作者
Berrighi, Fatma [1 ]
Medjadj, Imene [1 ,2 ]
Karapinar, Erdal [3 ,4 ]
机构
[1] Univ Sci & Technol Mohamed Boudiaf USTO MB Mnaouar, Dept Math, BP 1505, Bir El Djir 31000, Oran, Algeria
[2] Univ Oran 1 Ahmed Ben Bella, Lab Fundamental & Appl Math Oran LMFAO, BP 1524, El Mnaouar 31000, Oran, Algeria
[3] Atilim Univ, Dept Math, TR-06830 Incek, Ankara, Turkiye
[4] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
关键词
Functional differential equation; mild solution; finite delay; fixed point; condensing operator; measure of noncompactness; conformable fractional; DIFFERENTIAL-EQUATIONS;
D O I
10.2298/FIL2506989B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we delve into the realm of mild solutions for conformable fractional order functional evolution equations, focusing on cases where the fractional order is strictly greater than 1 and less than 2 within a separable Banach space. We demonstrate the existence, uniqueness, attractivity, and controllability of these solutions under local conditions. Our approach involves leveraging a contribution of Meir-Keeler's fixed point theorem alongside the principle of measures of noncompactness. To demonstrate the practical ramifications of our theoretical finds, we provide a specific example that underscores the relevance and applications of the established results.
引用
收藏
页码:1989 / 2002
页数:14
相关论文
共 50 条
[32]   Semilinear Conformable Fractional Differential Equations in Banach Spaces [J].
Jaiswal, Anjali ;
Bahuguna, D. .
DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2019, 27 (1-3) :313-325
[33]  
Kamenskii M., 2001, DE GRU NONL, V7, DOI DOI 10.1515/9783110870893
[34]  
Karapinar E., 2023, Synthesis Lectures on Mathematics & Statistics, DOI [10.1007/978-3-031-14969-6, DOI 10.1007/978-3-031-14969-6]
[35]   Impulsive integro-differential systems involving conformable fractional derivative in Banach space [J].
Kataria, Haribhai R. ;
Patel, Prakashkumar H. ;
Shah, Vishant .
INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2024, 12 (01) :56-64
[36]   A new definition of fractional derivative [J].
Khalil, R. ;
Al Horani, M. ;
Yousef, A. ;
Sababheh, M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 264 :65-70
[37]   Geometric meaning of conformable derivative via fractional cords [J].
Khalil, Roshdi ;
Al Horani, Mohammed ;
Abu Hammad, Mamon .
JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2019, 19 (04) :241-245
[38]  
Kilbas A.A., 2006, THEORY APPL FRACTION, V204, DOI DOI 10.1016/S0304-0208(06)80001-0
[39]   A Fractional-Order Creep Model of Water-Immersed Coal [J].
Li, Gen ;
Wanyan, Qiqi ;
Li, Zhengsheng ;
Yi, Haiyang ;
Ren, Fengfei ;
Chen, Zheng ;
Liu, Yang .
APPLIED SCIENCES-BASEL, 2023, 13 (23)
[40]   Impulsive differential equations involving general conformable fractional derivative in Banach spaces [J].
Liang, Jin ;
Mu, Yunyi ;
Xiao, Ti-Jun .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (03)