Mild solutions for conformable fractional order functional evolution equations via Meir-Keeler type fixed point theorem

被引:0
作者
Berrighi, Fatma [1 ]
Medjadj, Imene [1 ,2 ]
Karapinar, Erdal [3 ,4 ]
机构
[1] Univ Sci & Technol Mohamed Boudiaf USTO MB Mnaouar, Dept Math, BP 1505, Bir El Djir 31000, Oran, Algeria
[2] Univ Oran 1 Ahmed Ben Bella, Lab Fundamental & Appl Math Oran LMFAO, BP 1524, El Mnaouar 31000, Oran, Algeria
[3] Atilim Univ, Dept Math, TR-06830 Incek, Ankara, Turkiye
[4] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
关键词
Functional differential equation; mild solution; finite delay; fixed point; condensing operator; measure of noncompactness; conformable fractional; DIFFERENTIAL-EQUATIONS;
D O I
10.2298/FIL2506989B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we delve into the realm of mild solutions for conformable fractional order functional evolution equations, focusing on cases where the fractional order is strictly greater than 1 and less than 2 within a separable Banach space. We demonstrate the existence, uniqueness, attractivity, and controllability of these solutions under local conditions. Our approach involves leveraging a contribution of Meir-Keeler's fixed point theorem alongside the principle of measures of noncompactness. To demonstrate the practical ramifications of our theoretical finds, we provide a specific example that underscores the relevance and applications of the established results.
引用
收藏
页码:1989 / 2002
页数:14
相关论文
共 50 条
[1]  
Abbas S., 2024, Fractional Difference, Differential Equations, and Inclusions: Analysis and Stability, DOI [10.1016/C2023-0-00030-9, DOI 10.1016/C2023-0-00030-9]
[2]   On conformable fractional calculus [J].
Abdeljawad, Thabet .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 :57-66
[3]  
Adigüzel RS, 2021, APPL COMPUT MATH-BAK, V20, P313
[4]   On the solution of a boundary value problem associated with a fractional differential equation [J].
Adiguzel, Rezan Sevinik ;
Aksoy, Umit ;
Karapinar, Erdal ;
Erhan, Inci M. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (13) :10928-10939
[5]   Controllability for Semilinear Functional and Neutral Functional Evolution Equations with Infinite Delay in Fr,chet Spaces [J].
Agarwal, Ravi P. ;
Baghli, Selma ;
Benchohra, Mouffak .
APPLIED MATHEMATICS AND OPTIMIZATION, 2009, 60 (02) :253-274
[6]   FIXED POINT THEOREMS FOR MEIR-KEELER CONDENSING OPERATORS VIA MEASURE OF NONCOMPACTNESS [J].
Aghajani, A. ;
Mursaleen, M. ;
Haghighi, A. Shole .
ACTA MATHEMATICA SCIENTIA, 2015, 35 (03) :552-566
[7]   Construction controllability for conformable fractional stochastic evolution system with noninstantaneous impulse and nonlocal condition [J].
Ahmed, Hamdy M. .
STATISTICS & PROBABILITY LETTERS, 2022, 190
[8]   Conformable fractional stochastic differential equations with control function [J].
Ahmed, Hamdy M. .
SYSTEMS & CONTROL LETTERS, 2021, 158
[9]   Modified conformable double Laplace-Sumudu approach with applications [J].
Ahmed, Shams A. ;
Saadeh, Rania ;
Qazza, Ahmad ;
Elzaki, Tarig M. .
HELIYON, 2023, 9 (05)
[10]   THE HILLE YOSIDA THEOREM FOR CONFORMABLE FRACTIONAL SEMI-GROUPS OF OPERATORS [J].
Al-Sharif, Sh ;
Al Horani, M. ;
Khalil, R. .
MISSOURI JOURNAL OF MATHEMATICAL SCIENCES, 2021, 33 (01) :18-26