Convex mixed-integer optimization with Frank-Wolfe methods

被引:0
作者
Hendrych, Deborah [1 ,2 ]
Troppens, Hannah
Besancon, Mathieu [3 ]
Pokutta, Sebastian [1 ,2 ]
机构
[1] Zuse Inst Berlin, IOL Lab, Takustr 7, D-14195 Berlin, Germany
[2] Tech Univ Berlin, Str 17 Juni 135, D-10623 Berlin, Germany
[3] Univ Grenoble Alpes, POLARIS, Inria Grenoble, Lab Informat Grenoble, 621 Ave Cent, F-38400 St Martin Dheres, France
关键词
Nonlinear optimization; Mixed-integer optimization; Branch-and-bound; Frank-Wolfe; BOUND ALGORITHM; BRANCH; FRAMEWORK; SOLVERS;
D O I
10.1007/s12532-025-00288-w
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Mixed-integer nonlinear optimization encompasses a broad class of problems that present both theoretical and computational challenges. We propose a new type of method to solve these problems based on a branch-and-bound algorithm with convex node relaxations. These relaxations are solved with a Frank-Wolfe algorithm over the convex hull of mixed-integer feasible points instead of the continuous relaxation via calls to a mixed-integer linear solver as the linear minimization oracle. The proposed method computes feasible solutions while working on a single representation of the polyhedral constraints, leveraging the full extent of mixed-integer linear solvers without an outer approximation scheme and can exploit inexact solutions of node subproblems.
引用
收藏
页数:27
相关论文
共 57 条
[1]   Presolve Reductions in Mixed Integer Programming [J].
Achterberg, Tobias ;
Bixby, Robert E. ;
Gu, Zonghao ;
Rothberg, Edward ;
Weninger, Dieter .
INFORMS JOURNAL ON COMPUTING, 2020, 32 (02) :473-506
[2]  
Ahn M., 2025, INFORMS J. Optim.
[3]  
[Anonymous], 2018, JuMP-dev: Pavito, a gradient-based outer approximation solver for convex mixed-integer nonlinear programming
[4]  
Belotti P, 2009, COUENNE USERS MANUAL
[5]   A UNIFIED APPROACH TO MIXED-INTEGER OPTIMIZATION PROBLEMS WITH LOGICAL CONSTRAINTS [J].
Bertsimas, Dimitris ;
Cory-Wright, Ryan ;
Pauphilet, Jean .
SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (03) :2340-2367
[6]   BEST SUBSET SELECTION VIA A MODERN OPTIMIZATION LENS [J].
Bertsimas, Dimitris ;
King, Angela ;
Mazumder, Rahul .
ANNALS OF STATISTICS, 2016, 44 (02) :813-852
[7]   FrankWolfe.jl: A High-Performance and Flexible Toolbox for Frank-Wolfe Algorithms and Conditional Gradients [J].
Besancon, Mathieu ;
Carderera, Alejandro ;
Pokutta, Sebastian .
INFORMS JOURNAL ON COMPUTING, 2022, 34 (05) :2611-2620
[8]   Enabling Research through the SCIP Optimization Suite 8.0 [J].
Bestuzheva, Ksenia ;
Besancon, Mathieu ;
Chen, Wei-Kun ;
Chmiela, Antonia ;
Donkiewicz, Tim ;
Van Doornmalen, Jasper ;
Eifler, Leon ;
Gaul, Oliver ;
Gamrath, Gerald ;
Gleixner, Ambros ;
Gottwald, Leona ;
Graczyk, Christoph ;
Halbig, Katrin ;
Hoen, Alexander ;
Hojny, Christopher ;
Van Der Hulst, Rolf ;
Koch, Thorsten ;
Luebbecke, Marco ;
Maher, Stephen J. ;
Matter, Frederic ;
Muehmer, Erik ;
Mueller, Benjamin ;
Pfetsch, Marc E. ;
Rehfeldt, Daniel ;
Schlein, Steffan ;
Schloesser, Franziska ;
Serrano, Felipe ;
Shinano, Yuji ;
Sofranac, Boro ;
Turner, Mark ;
Vigerske, Stefan ;
Wegscheider, Fabian ;
Wellner, Philipp ;
Weninger, Dieter ;
Witzig, Jakob .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2023, 49 (02)
[9]  
Bestuzheva K, 2021, Arxiv, DOI [arXiv:2112.08872, 10.48550/arXiv.2112.08872, DOI 10.48550/ARXIV.2112.08872]
[10]   An algorithmic framework for convex mixed integer nonlinear programs [J].
Bonami, Pierre ;
Biegler, Lorenz T. ;
Conna, Andrew R. ;
Cornuejols, Gerard ;
Grossmann, Ignacio E. ;
Laird, Carl D. ;
Lee, Jon ;
Lodi, Andrea ;
Margot, Francois ;
Sawaya, Nicolas ;
Wachter, Andreas .
DISCRETE OPTIMIZATION, 2008, 5 (02) :186-204