Scenario Reduction with Guarantees for Stochastic Optimal Control of Linear Systems

被引:1
作者
Cordiano, Francesco [1 ]
De Schutter, Bart [1 ]
机构
[1] Delft Univ Technol, Delft Ctr Syst & Control, Delft, Netherlands
来源
2024 EUROPEAN CONTROL CONFERENCE, ECC 2024 | 2024年
基金
欧洲研究理事会;
关键词
MODEL-PREDICTIVE CONTROL; APPROXIMATION; OPTIMIZATION; STABILITY;
D O I
10.23919/ECC64448.2024.10590866
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Scenario reduction algorithms can be an effective means to provide a tractable description of the uncertainty in optimal control problems. However, they might significantly compromise the performance of the controlled system. In this paper, we propose a method to compensate for the effect of scenario reduction on stochastic optimal control problems for chance-constrained linear systems with additive uncertainty. We consider a setting in which the uncertainty has a discrete distribution, where the number of possible realizations is large. We then propose a reduction algorithm with a problem-dependent. loss function, and we define sufficient conditions on the stochastic optimal control problem to ensure out-of-sample guarantees (i.e., against the original distribution of the uncertainty) for the controlled system in terms of performance and chance constraint satisfaction. Finally, we demonstrate the effectiveness of the approach on a numerical example.
引用
收藏
页码:3502 / 3508
页数:7
相关论文
共 32 条
[1]   Scenario-based Stochastic Model Predictive Control for Dynamic Option Hedging [J].
Bemporad, Alberto ;
Gabbriellini, Tommaso ;
Puglia, Laura ;
Bellucci, Leonardo .
49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, :6089-6094
[2]   Stabilizing Model Predictive Control of Stochastic Constrained Linear Systems [J].
Bernardini, Daniele ;
Bemporad, Alberto .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (06) :1468-1480
[3]   A Probabilistic Particle-Control Approximation of Chance-Constrained Stochastic Predictive Control [J].
Blackmore, Lars ;
Ono, Masahiro ;
Bektassov, Askar ;
Williams, Brian C. .
IEEE TRANSACTIONS ON ROBOTICS, 2010, 26 (03) :502-517
[4]   A Sampling-and-Discarding Approach to Chance-Constrained Optimization: Feasibility and Optimality [J].
Campi, M. C. ;
Garatti, S. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 148 (02) :257-280
[5]  
Cordiano F., 2024, PROJECT CODE
[6]  
Dasgupta S., 2008, TOPICS UNSUPERVISED
[7]   Centroidal Voronoi tessellations: Applications and algorithms [J].
Du, Q ;
Faber, V ;
Gunzburger, M .
SIAM REVIEW, 1999, 41 (04) :637-676
[8]   Scenario reduction in stochastic programming -: An approach using probability metrics [J].
Dupacová, J ;
Gröwe-Kuska, N ;
Römisch, W .
MATHEMATICAL PROGRAMMING, 2003, 95 (03) :493-511
[9]   WEIGHTED MEDIAN ALGORITHMS FOR L1 APPROXIMATION [J].
GURWITZ, C .
BIT, 1990, 30 (02) :301-310
[10]  
Hartigan J. A., 1979, Applied Statistics, V28, P100, DOI 10.2307/2346830