Enhancing lipid accumulation in Phaeodactylum tricornutum using cost-effective antioxidant sodium ascorbate: mechanistic insights

被引:0
作者
Zhang, Huiying [1 ,2 ,3 ]
Dong, Guanghui [2 ]
Liu, Dong [1 ]
Wu, Yingzheng [1 ]
Yan, Congyang [1 ]
Qin, Yuan [1 ,2 ]
Wang, Jiangxin [4 ]
Liu, Jian [5 ]
机构
[1] Fujian Agr & Forestry Univ, Coll Life Sci, Fuzhou 350002, Peoples R China
[2] Fujian Agr & Forestry Univ, Coll Future Technol, Fuzhou 350002, Peoples R China
[3] Jiangnan Univ, Sci Ctr Future Foods, 1800 Lihu Rd, Wuxi 214122, Jiangsu, Peoples R China
[4] Shenzhen Univ, Sch Life Sci & Oceanograph, Shenzhen 518060, Guangdong, Peoples R China
[5] Fujian Agr & Forestry Univ, Coll Agr, State Key Lab Ecol Pest Control Fujian & Taiwan Cr, Key Lab,Minist Educ Genet Breeding & Multiple Util, Fuzhou, Peoples R China
关键词
Culture method; Diatom; Green technology; Intermediate metabolism; ROS homeostasis; ACID;
D O I
10.1016/j.biortech.2025.132825
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Microalgal biofuel production is limited by high costs. This study shows that timed antioxidant supplementation 1 mM sodium ascorbate (SE) on day 3 significantly boosts lipid productivity in Phaeodactylum tricornutum. SE treatment increased biomass by 10 % and total lipids by 40 %, especially C16:0 and C16:1 fatty acids. Mechanistically, SE triggered chloroplast ROS accumulation and enhanced antioxidant defenses (higher VC levels and APX/CAT/SOD activities). This response reduced PUFAs but increased overall lipid yield. Transcriptomics revealed two key mechanisms: (1) upregulation of glycolysis genes supplying lipid precursors, and (2) transient nitrogen metabolism activation (6 h), followed by downregulation (24 h), redirecting carbon toward lipid biosynthesis. Notably, the nitrate transporter NRT showed dynamic regulation. These results highlight SE's dual role in oxidative stress modulation and metabolic reprogramming, providing a cost-effective strategy to enhance algal biofuel production.
引用
收藏
页数:10
相关论文
共 47 条
[1]   Catalase and ascorbate peroxidase-representative H2O2-detoxifying heme enzymes in plants [J].
Anjum, Naser A. ;
Sharma, Pallavi ;
Gill, Sarvajeet S. ;
Hasanuzzaman, Mirza ;
Khan, Ekhlaque A. ;
Kachhap, Kiran ;
Mohamed, Amal A. ;
Thangavel, Palaniswamy ;
Devi, Gurumayum Devmanjuri ;
Vasudhevan, Palanisamy ;
Sofo, Adriano ;
Khan, Nafees A. ;
Misra, Amarendra Narayan ;
Lukatkin, Alexander S. ;
Singh, Harminder Pal ;
Pereira, Eduarda ;
Tuteja, Narendra .
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2016, 23 (19) :19002-19029
[2]   Large scale cultivation of genetically modified microalgae: A new era for environmental risk assessment [J].
Beacham, Tracey A. ;
Sweet, Jeremy B. ;
Allen, Michael J. .
ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2017, 25 :90-100
[3]   Biotechnological potential of Phaeodactylum tricornutum for biorefinery processes [J].
Branco-Vieira, Monique ;
San Martin, Sergio ;
Agurto, Cristian ;
Freitas, Marcos A., V ;
Martins, Antonio A. ;
Mata, Teresa M. ;
Caetano, Nidia S. .
FUEL, 2020, 268
[4]   Effect of ascorbic acid on bone marrow-derived mesenchymal stem cell proliferation and differentiation [J].
Choi, Kyung-Min ;
Seo, Young-Kwon ;
Yoon, Hee-Hoon ;
Song, Kye-Yong ;
Kwon, Soon-Yong ;
Lee, Hwa-Sung ;
Park, Jung-Keug .
JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2008, 105 (06) :586-594
[5]   Application of sodium erythorbate to promote the growth of Chlorella vulgaris [J].
Cui, Hongwu ;
Meng, Fanping ;
Li, Feng ;
Wang, Yuejie .
JOURNAL OF APPLIED PHYCOLOGY, 2017, 29 (03) :1135-1144
[6]   Culture Conditions Affect Antioxidant Production, Metabolism and Related Biomarkers of the Microalgae Phaeodactylum tricornutum [J].
Curcuraci, Eleonora ;
Manuguerra, Simona ;
Messina, Concetta Maria ;
Arena, Rosaria ;
Renda, Giuseppe ;
Ioannou, Theodora ;
Amato, Vito ;
Hellio, Claire ;
Barba, Francisco J. ;
Santulli, Andrea .
ANTIOXIDANTS, 2022, 11 (02)
[7]   Ascorbic acid: Chemistry, biology and the treatment of cancer [J].
Du, Juan ;
Cullen, Joseph J. ;
Buettner, Garry R. .
BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER, 2012, 1826 (02) :443-457
[8]  
El-Beltagi HS, 2022, GESUNDE PFLANZ, V74, P423, DOI 10.1007/s10343-021-00619-6
[9]  
Fierli D., 2022, PREPRINT, DOI [10.22541/au.164917626.69789362/v1, DOI 10.22541/AU.164917626.69789362/V1]
[10]   Techno-economic analysis of a microalgae-based biorefinery network for biofuels and value-added products [J].
Figueroa-Torres, Gonzalo M. ;
Theodoropoulos, Constantinos .
BIORESOURCE TECHNOLOGY REPORTS, 2023, 23