AI Applications in Transfusion Medicine: Opportunities, Challenges, and Future Directions

被引:0
作者
Barzilai, Merav [1 ,2 ]
Cohen, Omri [3 ,4 ,5 ]
机构
[1] Rabin Med Ctr, Blood Serv & Apheresis Inst, Tel Aviv, Israel
[2] Tel Aviv Univ, Tel Aviv, Israel
[3] Kaplan Med Ctr, Dept Transfus Med, Jerusalem, Israel
[4] Hebrew Univ Jerusalem, Jerusalem, Israel
[5] Univ Insubria, Dept Med & Surg, Varese, Italy
关键词
Artificial intelligence; Predictive analytics; Patient blood management; Hemovigilance systems; Transfusion medicine; ARTIFICIAL-INTELLIGENCE;
D O I
10.1159/000546303
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Artificial intelligence (AI) is reshaping healthcare, with its applications in transfusion medicine (TM) showing great promise to address longstanding challenges. Summary: This review explores the integration of AI-driven tools, including machine learning, deep learning, natural language processing, and predictive analytics, across various domains of TM. From enhancing donor management and optimizing blood product quality to predicting transfusion needs and assessing bleeding risks, AI has demonstrated its potential to improve operational efficiency, patient safety, and resource allocation. Additionally, AI-powered systems enable more accurate blood antigen phenotyping, automate hemovigilance workflows, and streamline inventory management through advanced forecasting models. While these advancements are largely exploratory, early studies highlight the growing importance of AI in improving patient outcomes and advancing precision medicine. However, challenges such as variability in clinical workflows, algorithmic transparency, equitable access, and ethical concerns around data privacy and bias must be addressed to ensure responsible integration. Key Messages: (i) AI-driven tools are being applied across multiple domains of TM. (ii) Early studies demonstrate the potential for AI to improve efficiency, safety, and personalization. (iii) Key implementation challenges include data privacy, workflow integration, and equitable access.
引用
收藏
页数:11
相关论文
共 47 条
[1]   Pro: Can We Use Artificial Intelligence-Derived Algorithms to Guide Patient Blood Management Decision-Making? [J].
Ahmed, Aamer .
JOURNAL OF CARDIOTHORACIC AND VASCULAR ANESTHESIA, 2023, 37 (10) :2141-2144
[2]   The practical use of artificial intelligence in Transfusion Medicine and Apheresis [J].
Anstey, Celine ;
Ullman, David ;
Su, Leon ;
Su, Chuying ;
Siniard, Chad ;
Simmons, Sierra ;
Edberg, Jesse ;
Williams III, Lance A. .
TRANSFUSION AND APHERESIS SCIENCE, 2024, 63 (06)
[3]  
Arshavsky-Graham S, 2022, ADV BIOCHEM ENG BIOT, V179, P247, DOI 10.1007/10_2020_127
[4]   Red Blood Cell Transfusion [J].
Carson, Jeffrey L. ;
Stanworth, Simon J. ;
Guyatt, Gordon ;
Valentine, Stacey ;
Dennis, Jane ;
Bakhtary, Sara ;
Cohn, Claudia S. ;
Dubon, Allan ;
Grossman, Brenda J. ;
Gupta, Gaurav K. ;
Hess, Aaron S. ;
Jacobson, Jessica L. ;
Kaplan, Lewis J. ;
Lin, Yulia ;
Metcalf, Ryan A. ;
Murphy, Colin H. ;
Pavenski, Katerina ;
Prochaska, Micah T. ;
Raval, Jay S. ;
Salazar, Eric ;
Saifee, Nabiha H. ;
Tobian, Aaron A. R. ;
So-Osman, Cynthia ;
Waters, Jonathan ;
Wood, Erica M. ;
Zantek, Nicole D. ;
Pagano, Monica B. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2023, 330 (19) :1892-1902
[5]   Predicting Factors for Blood Transfusion in Primary Total Knee Arthroplasty Using a Machine Learning Method [J].
Cavazos, Daniel R. ;
Sayeed, Zain ;
Court, Tannor ;
Chen, Chaoyang ;
Little, Bryan E. ;
Darwiche, Hussein F. .
JOURNAL OF THE AMERICAN ACADEMY OF ORTHOPAEDIC SURGEONS, 2023, 31 (19) :E845-E858
[6]   Machine learning to optimize automated RH genotyping using whole-exome sequencing data [J].
Chang, Ti-Cheng ;
Yu, Jing ;
Wang, Zhaoming ;
Hankins, Jane S. ;
Weiss, Mitchell J. ;
Wu, Gang ;
Westhoff, Connie M. ;
Chou, Stella T. ;
Zheng, Yan .
BLOOD ADVANCES, 2024, 8 (11) :2651-2659
[7]   Construction and effect evaluation of prediction model for red blood cell transfusion requirement in cesarean section based on artificial intelligence [J].
Chen, Hang ;
Cao, Bowei ;
Yang, Jiangcun ;
Ren, He ;
Xia, Xingqiu ;
Zhang, Xiaowen ;
Yan, Wei ;
Liang, Xiaodan ;
Li, Chen .
BMC MEDICAL INFORMATICS AND DECISION MAKING, 2023, 23 (01)
[8]   Introduction to Machine Learning, Neural Networks, and Deep Learning [J].
Choi, Rene Y. ;
Coyner, Aaron S. ;
Kalpathy-Cramer, Jayashree ;
Chiang, Michael F. ;
Campbell, J. Peter .
TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2020, 9 (02)
[9]   Construction of a predictive model for blood transfusion in patients undergoing total hip arthroplasty and identification of clinical heterogeneity [J].
Deng, Jicai ;
Zhou, Chenxing ;
Xiao, Fei ;
Chen, Jing ;
Li, Chunlai ;
Xie, Yubo .
SCIENTIFIC REPORTS, 2024, 14 (01)
[10]  
Dixit K, 2022, Arxiv, DOI arXiv:2207.09480