An extended block sparse Bayesian learning algorithm for EEG source imaging

被引:0
作者
Zhang, Boyuan [1 ,2 ]
Li, Donghao [3 ]
Wang, Dongqing [1 ,2 ]
机构
[1] Fuyao Univ Sci & Technol, Sch Intelligent Mfg & Future Technol, Fuzhou 350109, Peoples R China
[2] Minist Educ, Key Lab Future Intelligent Mfg Technol Highend Equ, Beijing, Peoples R China
[3] Univ Florida, Herbert Wertheim Coll Engn, Gainesville, FL 32611 USA
基金
中国国家自然科学基金;
关键词
EEG source imaging; Spatial smoothing; Discrete cosine transform; Block sparse Bayesian learning; SOURCE RECONSTRUCTION; SOURCE LOCALIZATION; SLORETA; SIGNALS;
D O I
10.1016/j.ins.2025.122354
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Electroencephalographic (EEG) source imaging reconstructs brain activity patterns from noninvasive electrode recordings. A persistent challenge is that identical EEG recordings can correspond to different source locations. To solve this problem, a novel spatial smoothing (SS) and discrete cosine transform (DCT) based block sparse Bayesian learning (BSBL) algorithm (i.e., the SS-DCT-BSBL algorithm) is explored for EEG source imaging. First, SS is exerted on brain voxel signals to generate clustered, sparse signals. Next, DCT transforms EEG signals into coefficients with main source information in low-frequency coefficients and noises in high-frequency coefficients, and captures temporal correlations between voxels through the block structure. A boundary optimization (BO)-based SS-DCT-BSBL algorithm is then derived for the update of hyperparameters. Experiment comparisons verify that the proposed algorithm is more superior over state-of-the-art methods using synthetic and clinical data (epilepsy and face processing) across various signal-to-noise ratios (-10 dB to 20 dB) and source configurations (1 to 6).
引用
收藏
页数:15
相关论文
共 50 条
[1]   A wavelet-based watermarking for secure medical image transmission in telemedicine application [J].
Amine, Khaldi ;
Redouane, Kafi Med ;
Sayah, Moad Med .
MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (23) :35401-35417
[2]   Model-Based Compressive Sensing [J].
Baraniuk, Richard G. ;
Cevher, Volkan ;
Duarte, Marco F. ;
Hegde, Chinmay .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (04) :1982-2001
[3]   Electro-encephalography [J].
Biasiucci, Andrea ;
Franceschiello, Benedetta ;
Murray, Micah M. .
CURRENT BIOLOGY, 2019, 29 (03) :R80-R85
[4]  
Bilmes J.A., 1998, INT COMPUT SCI I, V4, P126
[5]   A Long Short-Term Memory Network for Sparse Spatiotemporal EEG Source Imaging [J].
Bore, Joyce Chelangat ;
Li, Peiyang ;
Jiang, Lin ;
Ayedh, Walid M. A. ;
Chen, Chunli ;
Harmah, Dennis Joe ;
Yao, Dezhong ;
Cao, Zehong ;
Xu, Peng .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (12) :3787-3800
[6]   Sparse EEG Source Localization Using LAPPS: Least Absolute l-P (0<p<1) Penalized Solution [J].
Bore, Joyce Chelangat ;
Yi, Chanlin ;
Li, Peiyang ;
Li, Fali ;
Harmah, Dennis Joe ;
Si, Yajing ;
Guo, Daqing ;
Yao, Dezhong ;
Wan, Feng ;
Xu, Peng .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2019, 66 (07) :1927-1939
[7]   Robust estimation of noise for electromagnetic brain imaging with the champagne algorithm [J].
Cai, Chang ;
Hashemi, Ali ;
Diwakar, Mithun ;
Haufe, Stefan ;
Sekihara, Kensuke ;
Nagarajan, Srikantan S. .
NEUROIMAGE, 2021, 225
[8]   Robust Empirical Bayesian Reconstruction of Distributed Sources for Electromagnetic Brain Imaging [J].
Cai, Chang ;
Diwakar, Mithun ;
Chen, Dan ;
Sekihara, Kensuke ;
Nagarajan, Srikantan S. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (03) :567-577
[9]   Combined Electroencephalography-Functional Magnetic Resonance Imaging and Electrical Source Imaging Improves Localization of Pediatric Focal Epilepsy [J].
Centeno, Maria ;
Tierney, Tim M. ;
Perani, Suejen ;
Shamshiri, Elhum A. ;
St Pier, Kelly ;
Wilkinson, Charlotte ;
Konn, Daniel ;
Vulliemoz, Serge ;
Grouiller, Frederic ;
Lemieux, Louis ;
Pressler, Ronit M. ;
Clark, Christopher A. ;
Cross, J. Helen ;
Carmichael, David W. .
ANNALS OF NEUROLOGY, 2017, 82 (02) :278-287
[10]   LOCALIZATION OF BRAIN-FUNCTION USING MAGNETIC-RESONANCE-IMAGING [J].
COHEN, MS ;
BOOKHEIMER, SY .
TRENDS IN NEUROSCIENCES, 1994, 17 (07) :268-277