Explorable INR: An Implicit Neural Representation for Ensemble Simulation Enabling Efficient Spatial and Parameter Exploration

被引:0
作者
Chen, Yi-Tang [1 ]
Li, Haoyu [1 ]
Shi, Neng [1 ]
Luo, Xihaier [1 ]
Xu, Wei [1 ]
Shen, Han-Wei [1 ]
机构
[1] Ohio State Univ, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
Computational modeling; Uncertainty; Three-dimensional displays; Probabilistic logic; Data visualization; Data models; Analytical models; Neural radiance field; Market research; Image reconstruction; Parameter domain exploration; spatial domain exploration; ensemble visualization; implicit neural representation; VISUAL ANALYSIS; VISUALIZATION; UNCERTAINTY; FRAMEWORK; NETWORKS; FIELDS;
D O I
10.1109/TVCG.2025.3567052
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
With the growing computational power available for high-resolution ensemble simulations in scientific fields such as cosmology and oceanology, storage and computational demands present significant challenges. Current surrogate models fall short in the flexibility of point- or region-based predictions as the entire field reconstruction is required for each parameter setting, hence hindering the efficiency of parameter space exploration. Limitations exist in capturing physical attribute distributions and pinpointing optimal parameter configurations. In this work, we propose Explorable INR, a novel implicit neural representation-based surrogate model, designed to facilitate exploration and allow point-based spatial queries without computing full-scale field data. In addition, to further address computational bottlenecks of spatial exploration, we utilize probabilistic affine forms (PAFs) for uncertainty propagation through Explorable INR to obtain statistical summaries, facilitating various ensemble analysis and visualization tasks that are expensive with existing models. Furthermore, we reformulate the parameter exploration problem as optimization tasks using gradient descent and KL divergence minimization that ensures scalability. We demonstrate that the Explorable INR with the proposed approach for spatial and parameter exploration can significantly reduce computation and memory costs while providing effective ensemble analysis.
引用
收藏
页码:3758 / 3770
页数:13
相关论文
共 48 条
[1]   Nyx: A MASSIVELY PARALLEL AMR CODE FOR COMPUTATIONAL COSMOLOGY [J].
Almgren, Ann S. ;
Bell, John B. ;
Lijewski, Mike J. ;
Lukic, Zarija ;
Van Andel, Ethan .
ASTROPHYSICAL JOURNAL, 2013, 765 (01)
[2]   Visualization of Time-Varying Weather Ensembles Across Multiple Resolutions [J].
Biswas, Ayan ;
Lin, Guang ;
Liu, Xiaotong ;
Shen, Han-Wei .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017, 23 (01) :841-850
[3]   TensoRF: Tensorial Radiance Fields [J].
Chen, Anpei ;
Xu, Zexiang ;
Geiger, Andreas ;
Yu, Jingyi ;
Su, Hao .
COMPUTER VISION - ECCV 2022, PT XXXII, 2022, 13692 :333-350
[4]  
Coros Stelian, 2021, ADV NEUR IN, V34
[5]  
Zhong ED, 2020, Arxiv, DOI [arXiv:1909.05215, 10.48550/arXiv.1909.05215]
[6]   Uncertainty-aware Visualization of Regional Time Series Correlation in Spatio-temporal Ensembles [J].
Evers, Marina ;
Huesmann, Karim ;
Linsen, Lars .
COMPUTER GRAPHICS FORUM, 2021, 40 (03) :519-530
[7]  
Farokhmanesh F, 2024, Arxiv, DOI arXiv:2307.02203
[8]   K-Planes: Explicit Radiance Fields in Space, Time, and Appearance [J].
Fridovich-Keil, Sara ;
Meanti, Giacomo ;
Warburg, Frederik Rahbaek ;
Recht, Benjamin ;
Kanazawa, Angjoo .
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, :12479-12488
[9]   Plenoxels: Radiance Fields without Neural Networks [J].
Fridovich-Keil, Sara ;
Yu, Alex ;
Tancik, Matthew ;
Chen, Qinhong ;
Recht, Benjamin ;
Kanazawa, Angjoo .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :5491-5500
[10]   CoordNet: Data Generation and Visualization Generation for Time-Varying Volumes via a Coordinate-Based Neural Network [J].
Han, Jun ;
Wang, Chaoli .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2023, 29 (12) :4951-4963