Unveiling the Forensic Potential of Oral and Nasal Microbiota in Post-Mortem Interval Estimation

被引:0
作者
Chen, Ji [1 ]
Wei, Qi [1 ]
Yang, Fan [2 ,3 ]
Liu, Yanan [2 ,3 ]
Zhao, Yurong [4 ]
Zhang, Han [5 ]
Huang, Xin [1 ]
Zeng, Jianye [1 ]
Wang, Xiang [1 ]
Zhang, Suhua [1 ,2 ]
机构
[1] Fudan Univ, Inst Forens Sci, Shanghai 200032, Peoples R China
[2] Fudan Univ, Sch Life Sci, Minist Educ, Key Lab Contemporary Anthropol, Shanghai 200438, Peoples R China
[3] Minist Publ Secur, Inst Forens Sci, Key Lab Forens Evidence & Sci Technol, Shanghai 200042, Peoples R China
[4] Fudan Univ, Sch Life Sci, Shanghai 200438, Peoples R China
[5] Guizhou Med Univ, Dept Forens Med, Guiyang 550004, Peoples R China
基金
中国国家自然科学基金;
关键词
16S rRNA; microbial communities; post-mortem interval; random forest model; freezing; SUCCESSION;
D O I
10.3390/ijms26073432
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Microbiota have emerged as a promising tool for estimating the post-mortem interval (PMI) in forensic investigations. The role of oral and nasal microbiota in cadaver decomposition is crucial; however, their distribution across human cadavers at different PMIs remains underexplored. In this study, we collected 88 swab samples from the oral and nasal cavities of 10 healthy volunteers and 34 human cadavers. Using 16S rRNA gene sequencing, we conducted comprehensive analyses of the alpha diversity, beta diversity, and relative abundance distribution to characterize the microbial communities in both healthy individuals and cadavers at varying PMIs and under different freezing conditions. Random forest models identified Firmicutes, Proteobacteria, Bacteroidota, Actinobacteriota, and Fusobacteriota as potential PMI-associated biomarkers at the phylum level for both the oral and nasal groups, along with genus-level biomarkers specific to each group. These biomarkers exhibited nonlinear changes over increasing PMI, with turning points observed on days 5, 12, and 22. The random forest inference models demonstrated that oral biomarkers at both the genus and phylum levels achieved the lowest mean absolute error (MAE) values in the training dataset (MAE = 2.16 days) and the testing dataset (MAE = 5.14 days). Additionally, freezing had minimal impact on the overall phylum-level microbial composition, although it did affect the relative abundance of certain phyla. At the genus level, significant differences in microbial biomarkers were observed between frozen and unfrozen cadavers, with the oral group showing greater stability compared to the nasal group. These findings suggest that the influence of freezing should be considered when using genus-level microbial data to estimate PMIs. Overall, our results highlight the potential of oral and nasal microbiota as robust tools for PMI estimation and emphasize the need for further research to refine predictive models and explore the environmental factors shaping microbial dynamics.
引用
收藏
页数:16
相关论文
共 41 条
[1]   Dynamics of the oral microbiota as a tool to estimate time since death [J].
Adserias-Garriga, J. ;
Quijada, N. M. ;
Hernandez, M. ;
Rodriguez Lazaro, D. ;
Steadman, D. ;
Garcia-Gil, L. J. .
MOLECULAR ORAL MICROBIOLOGY, 2017, 32 (06) :511-516
[2]   The oral microbiome: diversity, biogeography and human health [J].
Baker, Jonathon L. ;
Welch, Jessica L. Mark ;
Kauffman, Kathryn M. ;
Mclean, Jeffrey S. ;
He, Xuesong .
NATURE REVIEWS MICROBIOLOGY, 2024, 22 (02) :89-104
[3]   The nasal cavity microbiota of healthy adults [J].
Bassis, Christine M. ;
Tang, Alice L. ;
Young, Vincent B. ;
Pynnonen, Melissa A. .
MICROBIOME, 2014, 2
[4]   Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 [J].
Bolyen, Evan ;
Rideout, Jai Ram ;
Dillon, Matthew R. ;
Bokulich, NicholasA. ;
Abnet, Christian C. ;
Al-Ghalith, Gabriel A. ;
Alexander, Harriet ;
Alm, Eric J. ;
Arumugam, Manimozhiyan ;
Asnicar, Francesco ;
Bai, Yang ;
Bisanz, Jordan E. ;
Bittinger, Kyle ;
Brejnrod, Asker ;
Brislawn, Colin J. ;
Brown, C. Titus ;
Callahan, Benjamin J. ;
Caraballo-Rodriguez, Andres Mauricio ;
Chase, John ;
Cope, Emily K. ;
Da Silva, Ricardo ;
Diener, Christian ;
Dorrestein, Pieter C. ;
Douglas, Gavin M. ;
Durall, Daniel M. ;
Duvallet, Claire ;
Edwardson, Christian F. ;
Ernst, Madeleine ;
Estaki, Mehrbod ;
Fouquier, Jennifer ;
Gauglitz, Julia M. ;
Gibbons, Sean M. ;
Gibson, Deanna L. ;
Gonzalez, Antonio ;
Gorlick, Kestrel ;
Guo, Jiarong ;
Hillmann, Benjamin ;
Holmes, Susan ;
Holste, Hannes ;
Huttenhower, Curtis ;
Huttley, Gavin A. ;
Janssen, Stefan ;
Jarmusch, Alan K. ;
Jiang, Lingjing ;
Kaehler, Benjamin D. ;
Bin Kang, Kyo ;
Keefe, Christopher R. ;
Keim, Paul ;
Kelley, Scott T. ;
Knights, Dan .
NATURE BIOTECHNOLOGY, 2019, 37 (08) :852-857
[5]  
Braga RM, 2016, BRAZ J MICROBIOL, V47, P86
[6]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[7]  
Callahan BJ, 2016, NAT METHODS, V13, P581, DOI [10.1038/NMETH.3869, 10.1038/nmeth.3869]
[8]   Estimating the number of species in a Stochastic abundance model [J].
Chao, A ;
Bunge, J .
BIOMETRICS, 2002, 58 (03) :531-539
[9]   The Future Is Now: Unraveling the Expanding Potential of Human (Necro)Microbiome in Forensic Investigations [J].
Claudia-Ferreira, Ana ;
Barbosa, Daniel Jose ;
Saegeman, Veroniek ;
Fernandez-Rodriguez, Amparo ;
Dinis-Oliveira, Ricardo Jorge ;
Freitas, Ana R. .
MICROORGANISMS, 2023, 11 (10)
[10]   Succession of oral microbiota community as a tool to estimate postmortem interval [J].
Dong, Kaikai ;
Xin, Ye ;
Cao, Fangqi ;
Huang, Zhiwei ;
Sun, Jing ;
Peng, Min ;
Liu, Wenbin ;
Shi, Ping .
SCIENTIFIC REPORTS, 2019, 9 (1)