An efficient operator splitting weak Galerkin method for singularly perturbed 2D parabolic PDEs

被引:0
作者
Raina, Aayushman [1 ]
Natesan, Srinivasan [1 ]
Toprakseven, Suayip [2 ]
机构
[1] Indian Inst Technol Guwahati, Dept Math, Gauhati 781039, Assam, India
[2] Yozgat Bozok Univ, Fac Art & Sci, Dept Math, TR-66100 Yozgat, Turkiye
关键词
Singularly perturbed 2D parabolic PDEs; Operator-splitting method; Piecewise-uniform Shishkin mesh; WG-FEM; Stability; Convergence analysis; ADI-type method; FINITE-ELEMENT-METHOD; CONVECTION-DIFFUSION PROBLEMS; FRACTIONAL-STEP METHOD; CONVERGENCE ANALYSIS; UNIFORM-CONVERGENCE; NUMERICAL SCHEME; ORDER; EQUATIONS; MESH;
D O I
10.1007/s11075-025-02152-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we have introduced an operator splitting weak Galerkin finite element method (WG-FEM) for a class of second order singularly perturbed time-dependent convection-diffusion-reaction problem in 2D. The suggested operator splitting approach divides the original model problem into two subproblems each in 1D, then solving each subproblem using WG-FEM in spatial direction eventually reduces the computational difficulty and high storage requirements. Backward Euler scheme is used for temporal derivative. Stability of the fully-discrete scheme has been studied and epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-uniform error estimates have been established. Numerical examples are provided validating our theoretical findings.
引用
收藏
页数:27
相关论文
共 28 条
[1]   Finite element methods of an operator splitting applied to population balance equations [J].
Ahmed, Naveed ;
Matthies, Gunar ;
Tobiska, Lutz .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (06) :1604-1621
[2]   A stabilizer free weak Galerkin finite element method for parabolic equation [J].
Al-Taweel, Ahmed ;
Hussain, Saqib ;
Wang, Xiaoshen .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 392
[3]   A novel two-step streamline-diffusion FEM for singularly perturbed 2D parabolic PDEs [J].
Avijit, D. ;
Natesan, S. .
APPLIED NUMERICAL MATHEMATICS, 2022, 172 :259-278
[4]   A fractional step method on a special mesh for the resolution of multidimensional evolutionary convection-diffusion problems [J].
Clavero, C ;
Jorge, JC ;
Lisbona, F ;
Shishkin, GI .
APPLIED NUMERICAL MATHEMATICS, 1998, 27 (03) :211-231
[5]   Higher-order convergence with fractional-step method for singularly perturbed 2D parabolic convection-diffusion problems on Shishkin mesh [J].
Das, Abhishek ;
Natesan, Srinivasan .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (07) :2387-2403
[7]   HYBRID HIGH-ORDER AND WEAK GALERKIN METHODS FOR THE BIHARMONIC PROBLEM [J].
Dong, Zhaonan ;
Ern, Alexandre .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (05) :2626-2656
[8]   Operator-splitting finite element algorithms for computations of high-dimensional parabolic problems [J].
Ganesan, Sashikumaar ;
Tobiska, Lutz .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (11) :6182-6196
[9]   AN OPERATOR-SPLITTING GALERKIN/SUPG FINITE ELEMENT METHOD FOR POPULATION BALANCE EQUATIONS: STABILITY AND CONVERGENCE [J].
Ganesan, Sashikumaar .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (06) :1447-1465
[10]   Convergence analysis of weak Galerkin flux-based mixed finite element method for solving singularly perturbed convection-diffusion-reaction problem [J].
Gharibi, Zeinab ;
Dehghan, Mehdi .
APPLIED NUMERICAL MATHEMATICS, 2021, 163 :303-316