In recent years, there has been an increasing interest in the application of progressive censoring as a means to reduce both cost and experiment duration. In the absence of explanatory variables, the present study employs a statistical inference approach for the inverse Weibull distribution, using a progressive type II censoring strategy with two independent samples. The article expounds on the maximum likelihood estimation method, utilizing the Fisher information matrix to derive approximate confidence intervals. Moreover, interval estimations are computed by the bootstrap method. We explore the application of Bayesian methods for estimating model parameters under both the squared error and LINEX loss functions. The Bayesian estimates and corresponding credible intervals are calculated via Markov chain Monte Carlo (MCMC). Finally, comprehensive simulation studies and real data analysis are carried out to validate the precision of the proposed estimation methods.