Evaluation of genomic breeding values and accuracy for carcass traits in Korean Hanwoo cows using whole-genome SNP chip panels

被引:0
作者
Jang, Ji-Hee [1 ]
Lee, Han-Deul [1 ]
Kim, Jong-Joo [1 ]
Haque, Md Azizul [1 ]
机构
[1] Yeungnam Univ, Dept Biotechnol, Gyongsan 38541, Gyeongbuk, South Korea
关键词
PREDICTION; CATTLE; PALATABILITY; SELECTION; STEER;
D O I
10.1007/s00335-025-10142-y
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Enhancing the quality and yield of Korean beef relies on improving carcass traits, including carcass weight (CWT), eye muscle area (EMA), backfat thickness (BF), and marbling score (MS). This study aimed to evaluate the accuracy of genomic EBVs for these traits using the genomic BLUP method. Phenotypic data were collected from 19,153 Hanwoo steers and 6,200 Hanwoo cows, with all animals genotyped using the Illumina Bovine 50K SNP chip. The population was divided into three groups to evaluate prediction accuracy. For CWT, theoretical accuracy reached 0.76, 0.75, and 0.78 for Groups 1, 2, and 3, respectively, with realized accuracy ranging from 0.70 to 0.74, indicating a strong correlation between predicted and actual performance. For EMA, theoretical accuracy ranged from 0.74 to 0.76, while realized accuracy was lower (0.64, 0.68, 0.69), suggesting the need for improved prediction models or larger, more diverse reference populations. BF showed theoretical accuracies of 0.75, 0.75, and 0.77, with realized accuracies of 0.59, 0.62, and 0.65. MS demonstrated the highest performance, with theoretical accuracies between 0.78 and 0.81, and realized accuracies between 0.73 and 0.78, reflecting a strong genetic component in marbling traits. This study underscores the importance of building a larger, cow-specific reference population to enhance GEBV prediction accuracy and maximize genetic gains in Hanwoo cow breeding programs.
引用
收藏
页数:15
相关论文
共 80 条
[1]   Effects of ignoring inbreeding in model-based accuracy for BLUP and SSGBLUP [J].
Aguilar, Ignacio ;
Fernandez, Eduardo N. ;
Blasco, Agustin ;
Ravagnolo, Olga ;
Legarra, Andres .
JOURNAL OF ANIMAL BREEDING AND GENETICS, 2020, 137 (04) :356-364
[2]   Genome-Wide Association Study to Identify QTL for Carcass Traits in Korean Hanwoo Cattle [J].
Alam, Mohammad Zahangir ;
Haque, Md Azizul ;
Iqbal, Asif ;
Lee, Yun-Mi ;
Ha, Jae-Jung ;
Jin, Shil ;
Park, Byoungho ;
Kim, Nam-Young ;
Won, Jeong Il ;
Kim, Jong-Joo .
ANIMALS, 2023, 13 (17)
[3]   Characteristics of Physiological Parameters of Japanese Black Calves Relate to Carcass Weight [J].
Arakawa, Shotaro ;
Kim, Minji ;
Aonuma, Tatsuya ;
Takagi, Michihiro ;
Watanabe, Satoshi ;
Lee, Huseong ;
Nishihara, Koki ;
Haga, Satoshi ;
Uemoto, Yoshinobu ;
Roh, Sanggun .
ANIMALS, 2023, 13 (03)
[4]   Invited review: Milk production and reproductive performance: Modern interdisciplinary insights into an enduring axiom [J].
Bello, N. M. ;
Stevenson, J. S. ;
Tempelman, R. J. .
JOURNAL OF DAIRY SCIENCE, 2012, 95 (10) :5461-5475
[5]   Functional Partitioning of Genomic Variance and Genome-Wide Association Study for Carcass Traits in Korean Hanwoo Cattle Using Imputed Sequence Level SNP Data [J].
Bhuiyan, Mohammad S. A. ;
Lim, Dajeong ;
Park, Mina ;
Lee, Soohyun ;
Kim, Yeongkuk ;
Gondro, Cedric ;
Park, Byoungho ;
Lee, Seunghwan .
FRONTIERS IN GENETICS, 2018, 9
[6]   Fast two-stage phasing of large-scale sequence data [J].
Browning, Brian L. ;
Tian, Xiaowen ;
Zhou, Ying ;
Browning, Sharon R. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2021, 108 (10) :1880-1890
[7]   The value of cows in reference populations for genomic selection of new functional traits [J].
Buch, L. H. ;
Kargo, M. ;
Berg, P. ;
Lassen, J. ;
Sorensen, A. C. .
ANIMAL, 2012, 6 (06) :880-886
[8]   Including diverse and admixed populations in genetic epidemiology research [J].
Caliebe, Amke ;
Tekola-Ayele, Fasil ;
Darst, Burcu F. ;
Wang, Xuexia ;
Song, Yeunjoo E. ;
Gui, Jiang ;
Sebro, Ronnie A. ;
Balding, David J. ;
Saad, Mohamad ;
Dube, Marie-Pierre .
GENETIC EPIDEMIOLOGY, 2022, 46 (07) :347-371
[9]   Genomic information allows for more accurate breeding values for milkability in dual-purpose Italian Simmental cattle [J].
Cesarani, A. ;
Garcia, A. ;
Hidalgo, J. ;
Degano, L. ;
Vicario, D. ;
Macciotta, N. P. P. ;
Lourenco, D. .
JOURNAL OF DAIRY SCIENCE, 2021, 104 (05) :5719-5727
[10]   Second-generation PLINK: rising to the challenge of larger and richer datasets [J].
Chang, Christopher C. ;
Chow, Carson C. ;
Tellier, Laurent C. A. M. ;
Vattikuti, Shashaank ;
Purcell, Shaun M. ;
Lee, James J. .
GIGASCIENCE, 2015, 4