Oxidation Mechanisms of Electrolyte and Fire Gas Generation Laws During a Lithium-Ion Battery Thermal Runaway

被引:0
作者
Tian, Yao [1 ,2 ]
Zhang, Xia [1 ]
Xia, Qing [1 ]
Chen, Zhaoyang [2 ]
机构
[1] China Waterborne Transport Res Inst, Safety & Qual Technol Res Ctr, Beijing 100088, Peoples R China
[2] Tsinghua Univ, Inst Mat Res, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
来源
FIRE-SWITZERLAND | 2025年 / 8卷 / 06期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
lithium-ion battery; thermal runaway; electrolyte oxidation; fire gases; quantum chemical calculation; SAFETY;
D O I
10.3390/fire8060226
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Lithium-ion batteries (LIBs) have come to hold ever greater significance across diverse fields. However, thermal runaway and associated fire incidents have undeniably constrained the application and development of LIBs. Consequently, gaining a profound understanding of the reaction mechanisms of LIB electrolytes during thermal runaway is of critical importance for ensuring the fire protection of LIBs. In this study, quantum chemical calculations were employed to construct oxidation reaction models of electrolytes, and a comprehensive summary of the sources of fire gas generation during the thermal runaway of LIBs is presented. During the sequence of oxidation reactions, the -COH functional group emerged as the most critical intermediate product. Under conditions of low oxygen availability, it was prone to decompose into CO, whereas in the presence of sufficient oxygen, it could undergo further oxidation to form -COOH and subsequently decompose into CO2. Moreover, the reaction chains associated with electrolyte oxidation were found to be highly intricate, characterized by multiple branches and a wide variety of intermediate products. Furthermore, an in-depth analysis was carried out on the generation mechanisms of several typical fire gases. The analysis revealed that CH3OH and C2H5OH could be considered as the characteristic products of the oxidation reactions of DMC and DEC, respectively. It is anticipated that this research will provide a robust theoretical foundation for elucidating the complex reactions involved in LIB fires and offer reaction models for fire simulation purposes, thereby contributing to the enhancement of the safety and reliability of LIBs in various applications.
引用
收藏
页数:18
相关论文
共 32 条
[1]   Using Fourier transform infrared spectroscopy to determine toxic gases in fires with lithium-ion batteries [J].
Andersson, Petra ;
Blomqvist, Per ;
Loren, Anders ;
Larsson, Fredrik .
FIRE AND MATERIALS, 2016, 40 (08) :999-1015
[2]   Explosion hazards from lithium-ion battery vent gas [J].
Baird, Austin R. ;
Archibald, Erik J. ;
Marr, Kevin C. ;
Ezekoye, Ofodike A. .
JOURNAL OF POWER SOURCES, 2020, 446 (446)
[3]   Cation-Solvent, Cation-Anion, and Solvent-Solvent Interactions with Electrolyte Solvation in Lithium Batteries [J].
Chen, Xiang ;
Zhang, Xue-Qiang ;
Li, Hao-Ran ;
Zhang, Qiang .
BATTERIES & SUPERCAPS, 2019, 2 (02) :128-131
[4]   A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards [J].
Chen, Yuqing ;
Kang, Yuqiong ;
Zhao, Yun ;
Wang, Li ;
Liu, Jilei ;
Li, Yanxi ;
Liang, Zheng ;
He, Xiangming ;
Li, Xing ;
Tavajohi, Naser ;
Li, Baohua .
JOURNAL OF ENERGY CHEMISTRY, 2021, 59 :83-99
[5]  
China.com.cn, The National Fire and Rescue Bureau Held a Press Conference on the Fire Safety Situation and Special Operations Since This Year
[6]  
Dennington R., GaussView, Version 6.0
[7]  
EVTank, Global New Energy Vehicle Sales Reached 18.236 Million in 2024, with China Accounting for Over 70%
[8]   Thermal runaway mechanism of lithium ion battery for electric vehicles: A review [J].
Feng, Xuning ;
Ouyang, Minggao ;
Liu, Xiang ;
Lu, Languang ;
Xia, Yong ;
He, Xiangming .
ENERGY STORAGE MATERIALS, 2018, 10 :246-267
[9]   Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry [J].
Feng, Xuning ;
Fang, Mou ;
He, Xiangming ;
Ouyang, Minggao ;
Lu, Languang ;
Wang, Hao ;
Zhang, Mingxuan .
JOURNAL OF POWER SOURCES, 2014, 255 :294-301
[10]  
Frisch J.M., Gaussian, V16