An Analysis of a Commercial GNSS-R Ocean Wind Speed Dataset

被引:0
作者
Al-Khaldi, Mohammad M. [1 ,2 ]
Johnson, Joel T. [1 ,2 ]
McKague, Darren S. [3 ]
Twigg, Dorina [4 ]
Russel, Anthony [4 ]
Policelli, Frederick S. [5 ]
机构
[1] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
[2] Ohio State Univ, Electrosci Lab, Columbus, OH 43210 USA
[3] Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Space Phys Res Lab, Ann Arbor, MI 48109 USA
[5] NASA Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
关键词
Wind speed; Signal to noise ratio; Sea measurements; Antenna measurements; Gain; Sea surface; Extraterrestrial measurements; Surface roughness; Rough surfaces; Gain measurement; Bistatic radar systems; CubeSats; global navigation satellite systems reflectometry (GNSS-R); ocean wind speed; rough surface scattering; SmallSats; PRIMARY HURRICANE VORTEX; PARAMETRIC REPRESENTATION; SIGNALS; SCATTERING;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An analysis of Level-2 (L2) ocean wind speed retrievals from 1st May, 2021 to 1st June, 2024 derived from Spire, Inc.'s Global Navigation Satellite System Reflectometry observatories is presented. Comparisons of retrieved ocean surface wind speeds with European Center for Medium-Range Weather Forecasts Reanalysis v5 estimates show correlations on the order of 73$\%$ and unbiased rms error (uRMSE) $\approx$ 2.4 m/s over all wind speeds using the latest v2.07 data version. Colocated observations with advanced scatterometer (ASCAT) B, ASCAT C, advanced microwave scanning radiometer 2, soil moisture active passive, and Cyclone Global Navigation Satellite System winds also show correlations up to 86$\%$ and overall uRMSE values ranging between 1.45-2.03 m/s, with "triple colocation" analyses yielding similar results. Errors are found to increase significantly for wind speeds exceeding 12-15 m/s, likely due to the relatively low signal-to-noise ratio of such measurements for Spire's receivers. A sensitivity of ocean wind speed retrievals to storm structure is nevertheless demonstrated that highlights an ability to capture large scale features in a manner commensurate with reference model data.
引用
收藏
页码:9798 / 9809
页数:12
相关论文
共 38 条
[31]   Parametric representation of the primary hurricane vortex. Part II: A new family of sectionally continuous profiles [J].
Willoughby, HE ;
Darling, RWR ;
Rahn, ME .
MONTHLY WEATHER REVIEW, 2006, 134 (04) :1102-1120
[32]   Parametric representation of the primary hurricane vortex. Part I: Observations and evaluation of the Holland (1980) model [J].
Willoughby, HE ;
Rahn, ME .
MONTHLY WEATHER REVIEW, 2004, 132 (12) :3033-3048
[33]   Lake Water Level Estimation From Grazing GNSS-Reflectometry and Satellite Radar Altimetry Over the Great Lakes [J].
Yanez, Carlos ;
Li, Weiqiang ;
Cardellach, Estel ;
Raynal, Matthias ;
Picot, Nicolas ;
Martin-Neira, Manuel ;
Borde, Franck .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 :1-5
[34]  
Yang N., 2022, IEEE Trans. Geosci. Remote Sens., V60
[35]   Directional signals in Windsat observations of hurricane ocean winds [J].
Yueh, Simon H. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (01) :130-136
[36]   SMAP L-Band Passive Microwave Observations of Ocean Surface Wind During Severe Storms [J].
Yueh, Simon H. ;
Fore, Alexander G. ;
Tang, Wenqing ;
Hayashi, Akiko ;
Stiles, Bryan ;
Reul, Nicolas ;
Weng, Yonghui ;
Zhang, Fuqing .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (12) :7339-7350
[37]   Scattering of GPS signals from the ocean with wind remote sensing application [J].
Zavorotny, VU ;
Voronovich, AG .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2000, 38 (02) :951-964
[38]   Mapping Surface Water Extents Using High-Rate Coherent Spaceborne GNSS-R Measurements [J].
Zhang, Jiahua ;
Morton, Y. Jade ;
Wang, Yang ;
Roesler, Carolyn J. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60