Soil quality, characterized by its physical, chemical, and biological properties, is closely linked to soil management. Reducing soil disturbance can limit soil degradation; however, tillage is still considered essential, particularly on poorly drained soils. This study aimed to identify the optimal tillage practices for winter wheat crops following long-term no tillage practice and crop rotation (2020-2023). Additionally, it highlights the considerable advantages of particular tillage practices in emphasizing their role in enhancing soil health and sustainable agriculture. The experiment followed a randomized complete block design with three replications and two tillage practices: no tillage (NT) and conventional tillage (CT). The research was carried out on a cambic chernozem soil type. The results revealed that physical properties such as bulk density (BD) can increase or decrease under NT, while soil water content (SWC) increased under the same system. The status of water-stable aggregates (WSAs) also improved in NT (88.41%) due to the incorporation of cover crop or plant residues in the 0-10 cm depth. Notably, the highest SWC value at harvest was obtained in the 0-10 cm soil depth, under NT, reaching 24.47%. Grain yields over four years of research were also influenced by tillage systems, resulting in mean yields of 6070 kg/ha for CT and 4285.25 kg/ha for the NT system. The Pearson correlation coefficient was calculated for the soil physical properties considered in pairs. Between BD and water-stable aggregates (WSAs), there was a moderate positive correlation (r = 0.458**) and statistical significance, but no linear correlation between BD and SWC (r = 0.089), and between WSAs and SWC (r = 0.026). Generally, using NT, which reduces soil disturbance and maintains residues on the surface, could contribute to land sustainability and climate mitigation in north-east Romania.