3D UAV Path Planning via Potential Filed-Imitation Reinforcement Learning

被引:0
作者
Han, Jiale [1 ]
Yang, Fan [1 ]
Yang, Jian [1 ]
Kang, Xueping [2 ]
机构
[1] South China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510640, Peoples R China
[2] Guangdong Prov Inst Land Surveying & Planning, Guangzhou 510062, Peoples R China
来源
2024 43RD CHINESE CONTROL CONFERENCE, CCC 2024 | 2024年
关键词
UAV; Path Planning; Reinforcement Learning; Artificial Potential Field;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
UAV applications have surged in recent years, creating increasingly complex task environments. Path planning algorithm quality directly impacts UAV safety and task efficiency. While the artificial potential field method (APF) excels in multi-UAV path planning, it is susceptible to local optima and unattainable goals. To overcome these difficulties, we introduce a dynamic APF method based on the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm. Additionally, we propose a multi-agent TD3 (MATD3) algorithm based on the APF method. Lastly, we leverage the behavioral cloning method to validate the network performance. Experimental results show the effectiveness of the proposed algorithms.
引用
收藏
页码:4742 / 4748
页数:7
相关论文
共 21 条
[1]   Multiagent Path Finding Using Deep Reinforcement Learning Coupled With Hot Supervision Contrastive Loss [J].
Chen, Lin ;
Wang, Yaonan ;
Mo, Yang ;
Miao, Zhiqiang ;
Wang, Hesheng ;
Feng, Mingtao ;
Wang, Sifei .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (07) :7032-7040
[2]   Exploring the Limitations of Behavior Cloning for Autonomous Driving [J].
Codevilla, Felipe ;
Santana, Eder ;
Lopez, Antonio M. ;
Gaidon, Adrien .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :9328-9337
[3]   Collision Avoidance in Pedestrian-Rich Environments With Deep Reinforcement Learning [J].
Everett, Michael ;
Chen, Yu Fan ;
How, Jonathan P. .
IEEE ACCESS, 2021, 9 :10357-10377
[4]  
Hernandez-Martinez Eduardo G, 2011, Convergence and collision avoidance in formation control: A survey of the artificial potential functions approach
[5]   Collision avoidance of multi unmanned aerial vehicles: A review [J].
Huang, Sunan ;
Teo, Rodney Swee Huat ;
Tan, Kok Kiong .
ANNUAL REVIEWS IN CONTROL, 2019, 48 :147-164
[6]   Multirobot Cooperative Learning for Predator Avoidance [J].
Hung Manh La ;
Lim, Ronny ;
Sheng, Weihua .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2015, 23 (01) :52-63
[7]   Imitation Learning: A Survey of Learning Methods [J].
Hussein, Ahmed ;
Gaber, Mohamed Medhat ;
Elyan, Eyad ;
Jayne, Chrisina .
ACM COMPUTING SURVEYS, 2017, 50 (02)
[9]  
Li Q., 2011, P 2 INT C INT CONTR, V1, P420, DOI DOI 10.1109/ICICIP.2011.6008278
[10]  
Littman M., 1994, MACHINE LEARNING P 1, P157, DOI DOI 10.1016/B978-1-55860-335-6.50027-1