Working Principle of Integrated Perovskite-Organic Solar Cells

被引:0
作者
Brinkmann, Kai Oliver [1 ,2 ]
Wang, Pang [1 ,2 ]
Kalasariya, Nikhil [3 ]
Opitz, Sven [1 ,2 ]
Boccarella, Gianluca [1 ,2 ]
Ozen, Sercan [4 ]
Oez, Seren Dilara [5 ]
Maschwitz, Timo [1 ,2 ]
Heiderhoff, Ralf [1 ,2 ]
Olthof, Selina [5 ]
Lang, Felix [4 ]
Stolterfoht, Martin [3 ]
Riedl, Thomas [1 ,2 ]
机构
[1] Univ Wuppertal, Inst Elect Devices, D-42119 Wuppertal, Germany
[2] Univ Wuppertal, Wuppertal Ctr Smart Mat & Syst, D-42119 Wuppertal, Germany
[3] Chinese Univ Hong Kong, Elect Engn Dept, Hong Kong, Peoples R China
[4] Univ Potsdam, Soft Matter Phys & Optoelect, D-14476 Potsdam, Germany
[5] Univ Wuppertal, Chair Mat & Surface Anal, D-42119 Wuppertal, Germany
关键词
DETAILED BALANCE LIMIT; HIGH-PERFORMANCE; EFFICIENCY; HETEROJUNCTION;
D O I
10.1021/acsenergylett.5c00823
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
While perovskite-organic tandem solar cells have gained significant attention for their potential to achieve high efficiencies and stability, a somewhat similar class of devices, termed "integrated" solar cells, has emerged. These devices differ by processing the bulk-heterojunction directly atop the perovskite without intermediate charge transport or interconnecting layers. Numerous reports continue to highlight increasing efficiencies, while the underlying mechanisms are often misunderstood. As a result, there are persistent claims that such integrated cells benefit from the extension of the spectral absorption or might even offer a pathway to surpass the detailed-balance limit of single-junctions. To evaluate their photovoltaic potential, here, we provide the first comprehensive explanation of the operation principle of these integrated perovskite-organic cells. Unlike tandem devices, which are connected in series through an interconnect, integrated cells are a parallel connection of the subcells, where the organic subcell comprises a charge extraction barrier. Our model accurately reproduces device characteristics from both our lab and the literature. Validation through subcell-selective characterization and drift-diffusion simulations confirms its applicability. We reveal that the hole extraction barrier in the organic subcell cannot be overcome without compromising the overall device performance. Integrated devices are, therefore, single-junction devices that cannot rival tandem devices in surpassing the detailed-balance limit.
引用
收藏
页码:3178 / 3187
页数:10
相关论文
共 59 条
[1]   A Universal Perovskite/C60 Interface Modification via Atomic Layer Deposited Aluminum Oxide for Perovskite Solar Cells and Perovskite-Silicon Tandems [J].
Artuk, Kerem ;
Turkay, Deniz ;
Mensi, Mounir D. ;
Steele, Julian A. ;
Jacobs, Daniel A. ;
Othman, Mostafa ;
Chin, Xin Yu ;
Moon, Soo-Jin ;
Tiwari, Ayodhya N. ;
Hessler-Wyser, Aicha ;
Jeangros, Quentin ;
Ballif, Christophe ;
Wolff, Christian M. .
ADVANCED MATERIALS, 2024, 36 (21)
[2]   All-Oxide MoOx/SnOx Charge Recombination Interconnects for Inverted Organic Tandem Solar Cells [J].
Becker, Tim ;
Trost, Sara ;
Behrendt, Andreas ;
Shutsko, Ivan ;
Polywka, Andreas ;
Goerrn, Patrick ;
Reckers, Philip ;
Das, Chittaranjan ;
Mayer, Thomas ;
Rasi, Dario Di Carlo ;
Hendriks, Koen H. ;
Wienk, Martijn M. ;
Janssen, Rene A. J. ;
Riedl, Thomas .
ADVANCED ENERGY MATERIALS, 2018, 8 (10)
[3]   Analysis of tandem solar cell efficiencies under AM1.5G spectrum using a rapid flux calculation method [J].
Bremner, S. P. ;
Levy, M. Y. ;
Honsberg, C. B. .
PROGRESS IN PHOTOVOLTAICS, 2008, 16 (03) :225-233
[4]   Perovskite-organic tandem solar cells with indium oxide interconnect [J].
Brinkmann, K. O. ;
Becker, T. ;
Zimmermann, F. ;
Kreusel, C. ;
Gahlmann, T. ;
Theisen, M. ;
Haeger, T. ;
Olthof, S. ;
Tueckmantel, C. ;
Guenster, M. ;
Maschwitz, T. ;
Goebelsmann, F. ;
Koch, C. ;
Hertel, D. ;
Caprioglio, P. ;
Pena-Camargo, F. ;
Perdigon-Toro, L. ;
Al-Ashouri, A. ;
Merten, L. ;
Hinderhofer, A. ;
Gomell, L. ;
Zhang, S. ;
Schreiber, F. ;
Albrecht, S. ;
Meerholz, K. ;
Neher, D. ;
Stolterfoht, M. ;
Riedl, T. .
NATURE, 2022, 604 (7905) :280-+
[5]   Perovskite-organic tandem solar cells [J].
Brinkmann, Kai O. ;
Wang, Pang ;
Lang, Felix ;
Li, Wei ;
Guo, Xiao ;
Zimmermann, Florian ;
Olthof, Selina ;
Neher, Dieter ;
Hou, Yi ;
Stolterfoht, Martin ;
Wang, Tao ;
Djurisic, Aleksandra B. ;
Riedl, Thomas .
NATURE REVIEWS MATERIALS, 2024, 9 (03) :202-217
[6]   Suppressing interface charge recombination for efficient integrated perovskite/organic bulk-heterojunction solar cells [J].
Cai, Zhizhao ;
Ma, Xinyuan ;
Cai, Jiefeng ;
Zhan, Zhenye ;
Lin, Dongxu ;
Chen, Ke ;
Liu, Pengyi ;
Xie, Weiguang .
JOURNAL OF POWER SOURCES, 2022, 541
[7]   On the Origin of the Ideality Factor in Perovskite Solar Cells [J].
Caprioglio, Pietro ;
Wolff, Christian M. ;
Sandberg, Oskar J. ;
Armin, Ardalan ;
Rech, Bernd ;
Albrecht, Steve ;
Neher, Dieter ;
Stolterfoht, Martin .
ADVANCED ENERGY MATERIALS, 2020, 10 (27)
[8]   Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage losses and optimized interconnecting layer [J].
Chen, Wei ;
Zhu, Yudong ;
Xiu, Jingwei ;
Chen, Guocong ;
Liang, Haoming ;
Liu, Shunchang ;
Xue, Hansong ;
Birgersson, Erik ;
Ho, Jian Wei ;
Qin, Xinshun ;
Lin, Jingyang ;
Ma, Ruijie ;
Liu, Tao ;
He, Yanling ;
Ng, Alan Man-Ching ;
Guo, Xugang ;
He, Zhubing ;
Yan, He ;
Djurisic, Aleksandra B. ;
Hou, Yi .
NATURE ENERGY, 2022, 7 (03) :229-237
[9]   High Short-Circuit Current Density via Integrating the Perovskite and Ternary Organic Bulk Heterojunction [J].
Chen, Wei ;
Sun, Huiliang ;
Hu, Qin ;
Djurisic, Aleksandra B. ;
Russell, Thomas P. ;
Guo, Xugang ;
He, Zhubing .
ACS ENERGY LETTERS, 2019, 4 (10) :2535-+
[10]   Efficient and Reproducible Monolithic Perovskite/Organic Tandem Solar Cells with Low-Loss Interconnecting Layers [J].
Chen, Xu ;
Jia, Ziyan ;
Chen, Zeng ;
Jiang, Tingming ;
Bai, Lizhong ;
Tao, Feng ;
Chen, Jianwu ;
Chen, Xinya ;
Liu, Tianyu ;
Xu, Xuehui ;
Yang, Chenying ;
Shen, Weidong ;
Sha, Wei E., I ;
Zhu, Haiming ;
Yang, Yang .
JOULE, 2020, 4 (07) :1594-1606