MODELING UPPER CITARUM WATERSHED HYDROLOGY USING SWAT+ AND GSMAP PRECIPITATION DATA

被引:0
作者
Nurhami, Anita [1 ]
Kardhana, Hadi [2 ,3 ]
Rohmat, Faizal Immaddudin Wira [2 ,3 ]
Soewondo, Prayatni [3 ]
Wijayasari, Winda [2 ]
机构
[1] Inst Teknol Bandung, Master Program Civil Engn, Bandung, Indonesia
[2] Inst Teknol Bandung, Water Resources Dev Ctr, Bandung, Indonesia
[3] Inst Teknol Bandung, Water & Wastewater Res Grp, Bandung, Indonesia
来源
INTERNATIONAL JOURNAL OF GEOMATE | 2025年 / 28卷 / 129期
关键词
Hydrological modelling; SWAT+; Satellite data; Model performance; LAND-USE; CHALLENGES; IMPACT; SOIL;
D O I
10.21660/2025.129.4846
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Hydrological modeling is a vital tool for understanding the complexities of the hydrological cycle. The Soil and Water Assessment Tool Plus (SWAT+), a semi-distributed hydrological model, simulates processes across various spatial and temporal scales. With advancements in hydrological modeling, integrating satellite data has become essential to address input data variability and improve analysis accuracy. This study evaluates the performance of satellite data as a primary input for SWAT+ in hydrological modeling. The model was validated against observed streamflow data, with performance assessed using Nash-Sutcliffe Efficiency (NSE), Percent Bias (PBIAS), and flow duration curves (FDC). Despite the model successfully capturing general seasonal patterns of wet and dry streamflow at a monthly scale, metric results showed suboptimal NSE and PBIAS values, reflecting significant discrepancies between simulated and observed data. This study highlights the potential of satellite data to mitigate data challenges in hydrological modeling while emphasizing the need to refine input data quality and parameterization to improve performance. The findings provide a foundation for further integrating remote sensing data into SWAT+ applications.
引用
收藏
页码:47 / 54
页数:8
相关论文
共 39 条
[1]   Quantifying the Role of Calibration Strategies on Surface-Subsurface Hydrologic Model Performance [J].
Abbas, Salam A. ;
Bailey, Ryan T. ;
White, Jeremy T. ;
Arnold, Jeffrey G. ;
White, Michael J. .
HYDROLOGICAL PROCESSES, 2024, 38 (10)
[2]  
[Anonymous], 2003, Digital Soil Map of the World and Derived Soil Properties
[3]   Hydrological responses to land use and land cover change and climate dynamics in the Rift Valley Lakes Basin, Ethiopia [J].
Ayalew, Ayenew Desalegn ;
Wagner, Paul D. ;
Tigabu, Tibebe B. ;
Sahlu, Dejene ;
Fohrer, Nicola .
JOURNAL OF WATER AND CLIMATE CHANGE, 2023, 14 (08) :2788-2807
[4]   Introduction to SWAT plus , A Completely Restructured Version of the Soil and Water Assessment Tool [J].
Bieger, Katrin ;
Arnold, Jeffrey G. ;
Rathjens, Hendrik ;
White, Michael J. ;
Bosch, David D. ;
Allen, Peter M. ;
Volk, Martin ;
Srinivasan, Raghavan .
JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 2017, 53 (01) :115-130
[5]  
Enung, 2022, INT J GEOMATE, V23, P147, DOI [10.21660/2022.98.3462, DOI 10.21660/2022.98.3462]
[6]  
Friedl M., 2022, Dataset, DOI [10.5067/MODIS/MCD12Q1.061, DOI 10.5067/MODIS/MCD12Q1.061]
[7]   A review of the global operational geostationary meteorological satellites [J].
Giri, Ram Kumar ;
Prakash, Satya ;
Yadav, Ramashray ;
Kaushik, Nitesh ;
Shukla, Munn Vinayak ;
Thapliyal, P. K. ;
Saikrishnan, K. C. .
REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2025, 37
[8]   Sensitivity of hydrological models to temporal and spatial resolutions of rainfall data [J].
Huang, Yingchun ;
Bardossy, Andras ;
Zhang, Ke .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2019, 23 (06) :2647-2663
[9]  
Japan Aerospace Exploration Agency (JAXA), 2024, Global Satellite Mapping of Precipitation (GSMaP)
[10]   Multi-mission satellite remote sensing data for improving land hydrological models via data assimilation [J].
Khaki, M. ;
Franssen, H. -J. Hendricks ;
Han, S. C. .
SCIENTIFIC REPORTS, 2020, 10 (01)