Asymptotic formulae for modified Bernstein operators based on regular summability methods

被引:0
作者
Alemdar, Meryem Ece [1 ]
Duman, Oktay [1 ]
机构
[1] TOBB Econ & Technol Univ, Dept Math, TR-06530 Sogutozu, Ankara, Turkiye
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2025年 / 54卷 / 03期
关键词
Bernstein polynomials; Bernstein-Kantorovich polynomials; Voronovskaja-type asymptotic formula; regular summability methods; matrix methods; power series methods; SUMMATION PROCESS; APPROXIMATION; ACCELERATION; CONVERGENCE; RESPECT;
D O I
10.15672/hujms.1486862
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we get new Voronovskaja-type asymptotic formulae for modified Bernstein operators by using regular summability methods. We also display some significant special cases of our results including the methods of Ces & agrave;ro summability, Riesz summability, Abel summability and Borel summability. At the end, we also discuss the similar results for the Kantorovich version of the operators.
引用
收藏
页码:958 / 971
页数:14
相关论文
共 22 条
[11]  
Hardy GH., 1949, Divergent Series
[12]  
Kantorovich L. V., 1930, C R ACAD URSS, P563
[13]   ACCELERATION BY SUBSEQUENCE TRANSFORMATIONS [J].
KEAGY, TA ;
FORD, WF .
PACIFIC JOURNAL OF MATHEMATICS, 1988, 132 (02) :357-362
[14]  
Lorentz G. G., 1953, Mathematical Expositions, V8
[15]   QUANTITATIVE RESULTS ON ALMOST CONVERGENCE OF A SEQUENCE OF POSITIVE LINEAR-OPERATORS [J].
MOHAPATRA, RN .
JOURNAL OF APPROXIMATION THEORY, 1977, 20 (03) :239-250
[16]  
Phillips G. M., 1997, ANN NUMER MATH, V4, P511, DOI DOI 10.1007/0-387-21682-0_7
[17]   Strong summation process in Lp spaces [J].
Sakaoglu, Ilknur ;
Orhan, Cihan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 86 :89-94
[18]   ACCELERATION OF LINEAR AND LOGARITHMIC CONVERGENCE [J].
SMITH, DA ;
FORD, WF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (02) :223-240
[19]   Approximation by positive linear operators in modular spaces by power series method [J].
Tas, E. ;
Yurdakadim, T. .
POSITIVITY, 2017, 21 (04) :1293-1306
[20]   Statistical Convergence with Respect to Power Series Methods and Applications to Approximation Theory [J].
Unver, Mehmet ;
Orhan, Cihan .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2019, 40 (05) :535-547