Asymptotic formulae for modified Bernstein operators based on regular summability methods

被引:0
作者
Alemdar, Meryem Ece [1 ]
Duman, Oktay [1 ]
机构
[1] TOBB Econ & Technol Univ, Dept Math, TR-06530 Sogutozu, Ankara, Turkiye
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2025年 / 54卷 / 03期
关键词
Bernstein polynomials; Bernstein-Kantorovich polynomials; Voronovskaja-type asymptotic formula; regular summability methods; matrix methods; power series methods; SUMMATION PROCESS; APPROXIMATION; ACCELERATION; CONVERGENCE; RESPECT;
D O I
10.15672/hujms.1486862
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we get new Voronovskaja-type asymptotic formulae for modified Bernstein operators by using regular summability methods. We also display some significant special cases of our results including the methods of Ces & agrave;ro summability, Riesz summability, Abel summability and Borel summability. At the end, we also discuss the similar results for the Kantorovich version of the operators.
引用
收藏
页码:958 / 971
页数:14
相关论文
共 22 条
[1]   General Summability Methods in the Approximation by Bernstein-Chlodovsky Operators [J].
Alemdar, Meryem Ece ;
Duman, Oktay .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2021, 42 (05) :497-509
[2]   Approximation by nonlinear integral operators via summability process [J].
Aslan, Ismail ;
Duman, Oktay .
MATHEMATISCHE NACHRICHTEN, 2020, 293 (03) :430-448
[3]   Summation process of positive linear operators [J].
Atlihan, Oe. G. ;
Orhan, C. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (05) :1188-1195
[4]  
Bernstein S.N., 1912, Commun Kharkov Math Soc, V12, P1
[5]  
Bojanic R., 1983, Proc. of the Canadian Math. Soc, V3, P5
[6]  
Boos J., 2000, Classical and modern methods in summability
[8]   Approximation via Power Series Method in Two-Dimensional Weighted Spaces [J].
Demirci, Kamil ;
Yildiz, Sevda ;
Dirik, Fadime .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (06) :3871-3883
[9]  
Fejér L, 1904, MATH ANN, V58, P51
[10]   Regular summability methods in the approximation by max-min operators [J].
Gokcer, Turkan Yeliz ;
Duman, Oktay .
FUZZY SETS AND SYSTEMS, 2022, 426 :106-120