Theoretical Study on High-Entropy Oxyfluoride Cathodes for Sodium-Ion Batteries

被引:0
作者
Alam, Khorsed [1 ,2 ]
Joshi, Akanksha [1 ,2 ]
Bano, Amreen [1 ,2 ,3 ]
Noked, Malachi [1 ,2 ]
Major, Dan Thomas [1 ,2 ]
机构
[1] Bar Ilan Univ, INIES Israel Natl Inst Energy Storage, Chem Dept, IL-5290002 Ramat Gan, Israel
[2] Bar Ilan Univ, Inst Nanotechnol & Adv Mat, IL-5290002 Ramat Gan, Israel
[3] TCG Ctr Res & Educ Sci & Technol TCG CREST, Res Inst Sustainable Energy RISE, Kolkata 700091, India
关键词
high-entropy oxyfluoride; sodium-ion batteries; cathode materials; densityfunctional theory; MonteCarlo simulated annealing; transition metal redox; charge compensation; TOTAL-ENERGY CALCULATIONS; PLANE-WAVE; POSITIVE ELECTRODE; OXIDE CATHODES; STABILITY; PROSPECTS; COHP;
D O I
10.1021/acsaem.5c00035
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High-entropy (HE) materials comprise a family of emerging solid-state materials, where multiple elements can occupy the same lattice positions and therefore enhance the configurational entropy. HE oxides (HEOs) can mitigate challenges facing layered cathode materials, such as capacity fading, and facilitate long-term cyclability. However, the mechanism behind the effect of HE on electrochemical properties is still poorly understood. In the current work, we employed classical force field and first-principles density functional theory (DFT) calculations to gain atomistic-level understanding of the thermodynamic and electrochemical features of a family of recently developed high-entropy oxyfluoride (HEO-F) cathode materials with the general formula Na x Li1-x MO1.9F0.1 (M is an element of Ni, Fe, Mn, Ti, Mg; x = 1.0, 0.9, 0.8). We used Monte Carlo simulated annealing (MCSA) in conjunction with classical force fields to determine the most favorable atomic arrangement within these high-entropy oxyfluorides. Subsequently, we conducted DFT calculations at different sodium concentrations during charging, analyzing the oxidation states, Bader charges, and partial density of states of the transition metal (TM) atoms, to elucidate their participation in the redox processes. Crystal orbital Hamilton population (COHP) calculations were performed to assess the strength of the metal-oxygen bonds, which are crucial for the cathode stability. Furthermore, we investigated the potential occurrence of antisite defects, involving cation exchange between Li and TM atoms. Analyses of all three compositions of Na x Li1-x MO1.9F0.1 (x = 1.0, 0.9, 0.8) suggest that the Na0.9 system exhibits superior electrochemical properties, in agreement with experiments. We identified key factors that can contribute to this superior performance, including (1) low crystal lattice variation during cycling, (2) enhanced electronic conductivity, (3) optimal charge balancing among transition metal atoms at high desodiation, (4) strong metal-oxygen bonding, and (5) limited occurrence of energetically unfavorable antisite defects.
引用
收藏
页码:5708 / 5720
页数:13
相关论文
共 68 条
[1]   How Comparable Are Sodium-Ion Batteries to Lithium-Ion Counterparts? [J].
Abraham, K. M. .
ACS ENERGY LETTERS, 2020, 5 (11) :3544-3547
[2]   Poly(ionic liquid)-Derived N-Doped Carbons with Hierarchical Porosity for Lithium- and Sodium-Ion Batteries [J].
Alkarmo, Walid ;
Ouhib, Farid ;
Aqil, Abdelhafid ;
Thomassin, Jean-Michel ;
Yuan, Jiayin ;
Gong, Jiang ;
Vertruyen, Benedicte ;
Detrembleur, Christophe ;
Jerome, Christine .
MACROMOLECULAR RAPID COMMUNICATIONS, 2019, 40 (01)
[3]   BAND THEORY AND MOTT INSULATORS - HUBBARD-U INSTEAD OF STONER-I [J].
ANISIMOV, VI ;
ZAANEN, J ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1991, 44 (03) :943-954
[4]   The quantum mechanical basis of conceptual chemistry [J].
Bader, RFW .
MONATSHEFTE FUR CHEMIE, 2005, 136 (06) :819-854
[5]   A QUANTUM-THEORY OF MOLECULAR-STRUCTURE AND ITS APPLICATIONS [J].
BADER, RFW .
CHEMICAL REVIEWS, 1991, 91 (05) :893-928
[6]   Computational Studies of Electrode Materials in Sodium-Ion Batteries [J].
Bai, Qiang ;
Yang, Lufeng ;
Chen, Hailong ;
Mo, Yifei .
ADVANCED ENERGY MATERIALS, 2018, 8 (17)
[7]   A systematic determination of hubbard U using the GBRV ultrasoft pseudopotential set [J].
Bennett, Joseph W. ;
Hudson, Blake G. ;
Metz, Irene K. ;
Liang, Dongyue ;
Spurgeon, Sidney ;
Cui, Qiang ;
Mason, Sara E. .
COMPUTATIONAL MATERIALS SCIENCE, 2019, 170
[8]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[9]   Understanding the Role of Minor Molybdenum Doping in LiNi0.5Co0.2Mn0.3O2 Electrodes: from Structural and Surface Analyses and Theoretical Modeling to Practical Electrochemical Cells [J].
Breuer, Ortal ;
Chakraborty, Arup ;
Liu, Jing ;
Kravchuk, Tatyana ;
Burstein, Larisa ;
Grinblat, Judith ;
Kauffman, Yaron ;
Gladkih, Alexandr ;
Nayak, Prasant ;
Tsubery, Merav ;
Frenkel, Anatoly I. ;
Talianker, Michael ;
Major, Dan T. ;
Markovsky, Boris ;
Aurbach, Doron .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (35) :29608-29621