Understanding the Regulation Activities of Transposons in Driving the Variation and Evolution of Polyploid Plant Genome

被引:0
作者
Xiao, Yafang [1 ]
Wang, Jianbo [1 ,2 ]
机构
[1] Wuhan Univ, Coll Life Sci, State Key Lab Hybrid Rice, Wuhan 430072, Peoples R China
[2] Guizhou Normal Univ, Sch Life Sci, Guiyang 550025, Peoples R China
来源
PLANTS-BASEL | 2025年 / 14卷 / 08期
基金
中国国家自然科学基金;
关键词
transposon; genome; polyploid; gene expression; epigenetic modification; GENE-EXPRESSION; REGULATION CONTRIBUTES; EPIGENETIC REGULATION; ARABIDOPSIS-THALIANA; DNA METHYLATION; ELEMENTS; RETROTRANSPOSITION; DOMESTICATION; CONSEQUENCES; ORIGIN;
D O I
10.3390/plants14081160
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Transposon is the main component of the eukaryotic genome, and more and more plant genome data show that transposons are diverse in regulating genome structure, variation, function and evolution, with different transposition mechanisms in the genome. Hybridization and polyploidy play an important role in promoting plant speciation and evolution, and recent studies have shown that polyploidy is usually accompanied by the expansion of transposons, which affect the genome size and structure of polyploid plants. Transposons can insert into genes and intergenic regions, resulting in great differences in the overall genome structure of closely related plant species, and it can also capture gene segments in the genome to increase the copy number of genes. In addition, transposons influence the epigenetic modification state of the genome and regulate the expression of the gene, while plant phenotype, biological and abiotic stress response are also regulated by transposons. Overall, transposons play an important role in the plant genome, especially polyploid plant genome, adaptation and evolution.
引用
收藏
页数:24
相关论文
共 147 条
[1]   Novel patterns of gene expression in polyploid plants [J].
Adams, KL ;
Wendel, JF .
TRENDS IN GENETICS, 2005, 21 (10) :539-543
[2]   Transposable element evolution in the allotetraploid Capsella bursa-pastoris [J].
Agren, J. Arvid ;
Huang, Hui-Run ;
Wright, Stephen I. .
AMERICAN JOURNAL OF BOTANY, 2016, 103 (07) :1197-1202
[3]   Whole-genome Duplications and the Long-term Evolution of Gene Regulatory Networks in Angiosperms [J].
Almeida-Silva, Fabricio ;
Van de Peer, Yves .
MOLECULAR BIOLOGY AND EVOLUTION, 2023, 40 (07)
[4]   Mobile Transposable Elements Shape Plant Genome Diversity [J].
Alseekh, Saleh ;
Scossa, Federico ;
Fernie, Alisdair R. .
TRENDS IN PLANT SCIENCE, 2020, 25 (11) :1062-1064
[5]   Transposable elements contribute to dynamic genome content in maize [J].
Anderson, Sarah N. ;
Stitzer, Michelle C. ;
Brohammer, Alex B. ;
Zhou, Peng ;
Noshay, Jaclyn M. ;
O'Connor, Christine H. ;
Hirsch, Cory D. ;
Ross-Ibarra, Jeffrey ;
Hirsch, Candice N. ;
Springer, Nathan M. .
PLANT JOURNAL, 2019, 100 (05) :1052-1065
[6]   Expansion of a core regulon by transposable elements promotes Arabidopsis chemical diversity and pathogen defense [J].
Barco, Brenden ;
Kim, Yoseph ;
Clay, Nicole K. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[7]   Long-read direct RNA sequencing reveals epigenetic regulation of chimeric gene-transposon transcripts in Arabidopsis thaliana [J].
Berthelier, Jeremy ;
Furci, Leonardo ;
Asai, Shuta ;
Sadykova, Munissa ;
Shimazaki, Tomoe ;
Shirasu, Ken ;
Saze, Hidetoshi .
NATURE COMMUNICATIONS, 2023, 14 (01)
[8]   Genomic innovation for crop improvement [J].
Bevan, Michael W. ;
Uauy, Cristobal ;
Wulff, Brande B. H. ;
Zhou, Ji ;
Krasileva, Ksenia ;
Clark, Matthew D. .
NATURE, 2017, 543 (7645) :346-354
[9]   The multiple fates of gene duplications: Deletion, hypofunctionalization, subfunctionalization, neofunctionalization, dosage balance constraints, and neutral variation [J].
Birchler, James A. ;
Yang, Hua .
PLANT CELL, 2022, 34 (07) :2466-2474
[10]   Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes [J].
Blanc, G ;
Wolfe, KH .
PLANT CELL, 2004, 16 (07) :1667-1678