VelociTI: An Architecture-level Performance Modeling Framework for Trapped Ion Quantum Computers

被引:0
作者
Hankin, Alexander [1 ]
Mahmoud, Abdulrahman [1 ,2 ]
Hempstead, Mark [3 ]
Brooks, David [1 ]
Wei, Gu-Yeon [1 ]
机构
[1] Harvard Univ, Cambridge, MA 02138 USA
[2] MBZUAI, Abu Dhabi, U Arab Emirates
[3] Tufts Univ, Medford, MA 02155 USA
来源
2024 IEEE INTERNATIONAL SYMPOSIUM ON WORKLOAD CHARACTERIZATION, IISWC 2024 | 2024年
关键词
quantum computing; ion trap; trapped ion; weak link; ion chain; analytical model; performance model; timing; scaling; MICROARCHITECTURE;
D O I
10.1109/IISWC63097.2024.00023
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Trapped-ion (TI) qubit architectures have recently become a promising candidate for designing and building quantum computers. In the current noisy-intermediate scale quantum (NISQ) era, TI qubits stand out for their connectivity and reliability over other candidates such as superconducting qubits. However, physical constraints stemming from fine-grained frequency control of TI qubits introduce limitations to the maximum number of trapped-ions in a quantum computing system. This fundamentally challenges the design of large TI-based quantum computers, with various quantum applications requiring a large number of qubits for practical realization. Recent work has proposed TI Quantum Charge Coupled Devices (QCCD) which provides mechanisms to link multiple ion-chains together to address the issue of scalability. While such advances help increase the total qubit count in a TI system, the weak links between ion chains introduce a performance bottleneck and gate-latency penalty. Prior TI modeling toolflows have not explored the performance and scalability implications introduced by weak links on the design of future TI systems; in this work, we directly elevate the weak link as an architectural knob, and present an architecture-level performance modeling framework called VelociTI. We use VelociTI to study the performance and scalability trade-offs in a trapped-ion quantum computing design and find that optimal scheduling of qubits can provide a 6.2x speedup in performance. Additionally, our analysis shows that scaling TI quantum computers horizontally (i.e., minimizing the use of weak links and maximizing the chain length) results in a 20% average speedup compared to using more chains for qubit placement.
引用
收藏
页码:156 / 168
页数:13
相关论文
共 67 条
[1]  
Aleksandrowicz G., 2019, QISKIT OPEN SOURCE F
[2]  
Amazon Web Services, 2020, Amazon braket
[3]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[4]  
Azure, 2022, Azure Quantum
[5]   Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits [J].
Ballance, C. J. ;
Harty, T. P. ;
Linke, N. M. ;
Sepiol, M. A. ;
Lucas, D. M. .
PHYSICAL REVIEW LETTERS, 2016, 117 (06)
[6]  
Barz S, 2013, NAT PHYS, V9, P727, DOI [10.1038/NPHYS2763, 10.1038/nphys2763]
[7]  
Bernstein E., 1993, Proceedings of the Twenty-Fifth Annual ACM Symposium on the Theory of Computing, P11, DOI 10.1145/167088.167097
[8]   Quantum machine learning [J].
Biamonte, Jacob ;
Wittek, Peter ;
Pancotti, Nicola ;
Rebentrost, Patrick ;
Wiebe, Nathan ;
Lloyd, Seth .
NATURE, 2017, 549 (7671) :195-202
[9]   Near-ground-state transport of trapped-ion qubits through a multidimensional array [J].
Blakestad, R. B. ;
Ospelkaus, C. ;
VanDevender, A. P. ;
Wesenberg, J. H. ;
Biercuk, M. J. ;
Leibfried, D. ;
Wineland, D. J. .
PHYSICAL REVIEW A, 2011, 84 (03)
[10]  
Brooks D, 2000, PROCEEDING OF THE 27TH INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE, P83, DOI [10.1145/342001.339657, 10.1109/ISCA.2000.854380]