Intelligent prediction and oriented design of high-hardness high-entropy ceramics

被引:0
作者
Wang, Anzhe [1 ,2 ]
Liu, Jicheng [1 ]
Guo, Linwei [3 ]
Qu, Kejie [1 ]
Xie, Haishen [4 ]
Li, Yawei [5 ]
Du, Bin [3 ]
机构
[1] Nanjing Inst Technol, Sch Mat Sci & Engn, Nanjing 211167, Peoples R China
[2] Nanjing Inst Technol, Jiangsu Key Lab Adv Struct Mat & Applicat Technol, Nanjing 211167, Peoples R China
[3] Guangzhou Univ, Sch Phys & Mat Sci, Guangzhou 510006, Peoples R China
[4] Jointech Tooling & Moulding Technol Co Ltd, Suzhou 215131, Peoples R China
[5] Wuhan Univ Sci & Technol, State Key Lab Adv Refractories, Wuhan 430081, Peoples R China
来源
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T | 2025年 / 36卷
基金
中国国家自然科学基金;
关键词
Machine learning; High-entropy ceramics; Hardness; Mechanical properties prediction; Oriented design; MECHANICAL-PROPERTIES; HAFNIUM CARBONITRIDE; COMBUSTION SYNTHESIS; PHASE-STABILITY; MELTING-POINTS; CARBIDES; FABRICATION; REDUCTION; ALLOYS;
D O I
10.1016/j.jmrt.2025.04.163
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High-entropy ceramics are considered vital candidate materials for applications in rail transportation and advanced manufacturing due to their exceptional hardness and wear resistance. However, the intricate relationship between their composition and mechanical properties presents challenges for on-demand material design. This work utilizes machine learning and heuristic optimization algorithms to achieve accurate predictions of bulk high-entropy ceramics hardness (with validation set errors <10 %) and the oriented design of high-entropy ceramics with a hardness of 25 GPa (with an average error of 2.6 %). This achievement is attributed to three key innovations: the construction of the feature space based on the Pearson correlation coefficient and genetic algorithm, along with algorithm selection and optimization through hyperparameter tuning; the novel combination of reduced-dimensionality component compositions with atomic/precursor descriptors, achieving a model R-2 value of up to 0.898; the optimization of constituent elements using genetic algorithm and principal component analysis, providing direct guidance for the design of high-hardness high-entropy ceramics. Through these methodologies, new high-entropy ceramics compositions, typically represented by (Ti0<middle dot>25Zr0<middle dot>25Nb0.25Hf0.25)C, were successfully designed, achieving hardness of up to 23.9-25.2 GPa. This oriented design methodology holds promise for accelerating the on-demand design of high-entropy ceramics.
引用
收藏
页码:6015 / 6023
页数:9
相关论文
共 66 条
[1]   High-entropy ceramics: Review of principles, production and applications [J].
Akrami, Saeid ;
Edalati, Parisa ;
Fuji, Masayoshi ;
Edalati, Kaveh .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2021, 146
[2]   Valence electron concentration as an indicator for mechanical properties in rocksalt structure nitrides, carbides and carbonitrides [J].
Balasubramanian, Karthik ;
Khare, Sanjay V. ;
Gall, Daniel .
ACTA MATERIALIA, 2018, 152 :175-185
[3]   The Power of Generative AI: A Review of Requirements, Models, Input-Output Formats, Evaluation Metrics, and Challenges [J].
Bandi, Ajay ;
Adapa, Pydi Venkata Satya Ramesh ;
Kuchi, Yudu Eswar Vinay Pratap Kumar .
FUTURE INTERNET, 2023, 15 (08)
[4]   Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings [J].
Braic, V. ;
Vladescu, Alina ;
Balaceanu, M. ;
Luculescu, C. R. ;
Braic, M. .
SURFACE & COATINGS TECHNOLOGY, 2012, 211 :117-121
[5]   Ultra-high-temperature tantalum-hafnium carbonitride ceramics fabricated by combustion synthesis and spark plasma sintering [J].
Buinevich, V. S. ;
Nepapushev, A. A. ;
Moskovskikh, D. O. ;
Kuskov, K., V ;
Yudin, S. N. ;
Mukasyan, A. S. .
CERAMICS INTERNATIONAL, 2021, 47 (21) :30043-30050
[6]   Mechanochemical synthesis and spark plasma sintering of hafnium carbonitride ceramics [J].
Buinevich, V. S. ;
Nepapushev, A. A. ;
Moskovskikh, D. O. ;
Trusov, G. V. ;
Kuskov, K. V. ;
Mukasyan, A. S. .
ADVANCED POWDER TECHNOLOGY, 2021, 32 (02) :385-389
[7]   Fabrication of ultra-high-temperature nonstoichiometric hafnium carbonitride via combustion synthesis and spark plasma sintering [J].
Buinevich, V. S. ;
Nepapushev, A. A. ;
Moskovskikh, D. O. ;
Trusov, G., V ;
Kuskov, K., V ;
Vadchenko, S. G. ;
Rogachev, A. S. ;
Mukasyan, A. S. .
CERAMICS INTERNATIONAL, 2020, 46 (10) :16068-16073
[8]   Processing and Properties of High-Entropy Ultra-High Temperature Carbides [J].
Castle, Elinor ;
Csanadi, Tamas ;
Grasso, Salvatore ;
Dusza, Jan ;
Reece, Michael .
SCIENTIFIC REPORTS, 2018, 8
[9]   Ultrafast synthesis and pressureless densification of multicomponent nitride and carbonitride ceramics [J].
Che, Tong ;
Mao, Hai-Rong ;
Guo, Rui-Fen ;
Shen, Ping .
CERAMICS INTERNATIONAL, 2023, 49 (19) :31530-31538
[10]   Bulk high-entropy nitrides and carbonitrides [J].
Dippo, Olivia F. ;
Mesgarzadeh, Neda ;
Harrington, Tyler J. ;
Schrader, Grant D. ;
Vecchio, Kenneth S. .
SCIENTIFIC REPORTS, 2020, 10 (01)