Consensus exploration and detail perception for co-salient object detection in optical remote sensing images

被引:0
作者
Ge, Yanliang [1 ]
Chen, Jiaxue [1 ]
Liang, Taichuan [1 ]
Zhong, Yuxi [1 ]
Bi, Hongbo [1 ]
Zhang, Qiao [2 ]
机构
[1] Northeast Petr Univ, Daqing 163318, Peoples R China
[2] China Univ Petr East China, Qingdao 266580, Peoples R China
基金
中国国家自然科学基金;
关键词
Co-salient object detection; Optical remote sensing images; Dataset; Consensus exploration; Detail perception; NETWORK;
D O I
10.1016/j.imavis.2025.105586
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Co-salient object detection (CoSOD) in optical remote sensing images (ORSI) aims to identify common salient objects across a set of related images. To address this, we introduce the first large-scale dataset, CoORSI, comprising 7668 high-quality images annotated with target masks, covering various macroscopic geographic scenes and man-made targets. Furthermore, we propose a novel network, Consensus Exploration and Detail Perception Network (CEDPNet), specifically designed for CoSOD in ORSI. CEDPNet incorporates a Collaborative Object Search Module (COSM) to integrate high-level features and explore collaborative objects, and a Feature Sensing Module (FSM) to enhance salient target perception through difference contrast enhancement and multi-scale detail boosting. By continuously fusing high-level semantic information with low-level detailed features, CEDPNet achieves accurate co-salient object detection. Extensive experiments demonstrate that CEDPNet significantly outperforms state-of-the-art methods on six evaluation metrics, underscoring its effectiveness for CoSOD in ORSI. The CoORSI dataset, model, and results will be publicly available at https://github.com/ chen000701/CEDPNet.
引用
收藏
页数:13
相关论文
共 77 条
[51]  
Simonyan K, 2015, Arxiv, DOI arXiv:1409.1556
[52]  
Tan MX, 2019, PR MACH LEARN RES, V97
[53]  
Tan ZY, 2013, INT CONF ACOUST SPEE, P2114, DOI 10.1109/ICASSP.2013.6638027
[54]   ORSI Salient Object Detection via Multiscale Joint Region and Boundary Model [J].
Tu, Zhengzheng ;
Wang, Chao ;
Li, Chenglong ;
Fan, Minghao ;
Zhao, Haifeng ;
Luo, Bin .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[55]  
Usman M.T., 2024, IEEE Trans. Consum. Electron.
[56]  
Vaswani A, 2017, ADV NEUR IN, V30
[57]   Hybrid Feature Aligned Network for Salient Object Detection in Optical Remote Sensing Imagery [J].
Wang, Qi ;
Liu, Yanfeng ;
Xiong, Zhitong ;
Yuan, Yuan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[58]  
Wei J, 2020, AAAI CONF ARTIF INTE, V34, P12321
[59]   Remote sensing in urban planning: Contributions towards ecologically sound policies? [J].
Wellmann, Thilo ;
Lausch, Angela ;
Andersson, Erik ;
Knapp, Sonja ;
Cortinovis, Chiara ;
Jache, Jessica ;
Scheuer, Sebastian ;
Kremer, Peleg ;
Mascarenhas, Andre ;
Kraemer, Roland ;
Haase, Annegret ;
Schug, Franz ;
Haase, Dagmar .
LANDSCAPE AND URBAN PLANNING, 2020, 204
[60]   CBAM: Convolutional Block Attention Module [J].
Woo, Sanghyun ;
Park, Jongchan ;
Lee, Joon-Young ;
Kweon, In So .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :3-19