Machine-Learning Applications in Eating-Disorder-Outcome Prediction: A Systematic Scoping Review

被引:0
作者
McClure, Zoe [1 ]
Fuller-Tyszkiewicz, Matthew [1 ,2 ]
Messer, Mariel [1 ]
Linardon, Jake [1 ,2 ]
机构
[1] Deakin Univ, Sch Psychol, Geelong, Australia
[2] Deakin Univ, Ctr Social & Early Emot Dev, Geelong, Australia
基金
英国医学研究理事会;
关键词
scoping review; eating disorder; machine learning; outcome prediction; RISK-FACTORS; 1ST-EPISODE PSYCHOSIS; ANOREXIA-NERVOSA; MENTAL-HEALTH; ONSET;
D O I
10.1177/21677026251340348
中图分类号
B849 [应用心理学];
学科分类号
040203 ;
摘要
Eating disorders (EDs) are complex and debilitating conditions. Prior efforts to predict outcomes (onset, prognosis, treatment response) have yielded inconsistent findings. Machine-learning (ML) techniques have shown promise to improve outcome prediction, but a systematic literature synthesis is missing. We conducted a systematic scoping review to summarize extant literature on ML applications in ED-outcome-prediction research, identifying 75 studies. ML has mostly been used to predict ED diagnostic status (k = 45); other studies have predicted escalation of ED risk and symptoms (k = 13), treatment outcomes (k = 12), and ED onset (k = 6). Decision trees, random forest, and support-vector machines were the most common models used. Although many studies reported moderate to high predictive performance, the benefits of ML over traditional statistical techniques remains unclear in light of inconsistent findings. We make several recommendations for future research (i.e., integrating multiple data types, external validation) to encourage continued progress in this developing field.
引用
收藏
页数:18
相关论文
共 106 条
[1]   Classification of Twitter users with eating disorder engagement: Learning from the biographies [J].
Abuhassan, Mohammad ;
Anwar, Tarique ;
Fuller-Tyszkiewicz, Matthew ;
Jarman, Hannah K. ;
Shatte, Adrian ;
Liu, Chengfei ;
Sukunesan, Suku .
COMPUTERS IN HUMAN BEHAVIOR, 2023, 140
[2]   Empowering machine learning models with contextual knowledge for enhancing the detection of eating disorders in social media posts [J].
Alberto Benitez-Andrades, Jose ;
Teresa Garcia-Ordas, Maria ;
Russo, Mayra ;
Sakor, Ahmad ;
Rotger, Luis Daniel Fernandes ;
Vidal, Maria-Esther .
SEMANTIC WEB, 2023, 14 (05) :873-892
[3]   Perceived barriers and facilitators towards help-seeking for eating disorders: A systematic review [J].
Ali, Kathina ;
Farrer, Louise ;
Fassnacht, Daniel B. ;
Gulliver, Amelia ;
Bauer, Stephanie ;
Griffiths, Kathleen M. .
INTERNATIONAL JOURNAL OF EATING DISORDERS, 2017, 50 (01) :9-21
[4]   Testing for interactive and non-linear effects of risk factors for binge eating and purging eating disorders [J].
Allen, Karina L. ;
Byrne, Susan M. ;
Crosby, Ross D. ;
Stice, Eric .
BEHAVIOUR RESEARCH AND THERAPY, 2016, 87 :40-47
[5]   Identifying clinical clusters with distinct trajectories in first-episode psychosis through an unsupervised machine learning technique [J].
Amoretti, Silvia ;
Verdolini, Norma ;
Mezquida, Gisela ;
Rabelo-da-Ponte, Francisco Diego ;
Cuesta, Manuel J. ;
Pina-Camacho, Laura ;
Gomez-Ramiro, Marta ;
De-la-Camara, Concepcion ;
Gonzalez-Pinto, Ana ;
Diaz-Caneja, Covadonga M. ;
Corripio, Iluminada ;
Vieta, Eduard ;
de la Serna, Elena ;
Mane, Anna ;
Sole, Brisa ;
Carvalho, Andre F. ;
Serra, Maria ;
Bernardo, Miguel .
EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2021, 47 :112-129
[6]  
Aragn M. E., 2020, TEXT SPEECH DIALOGUE
[7]   Toward Individualized Prediction of Binge-Eating Episodes Based on Ecological Momentary Assessment Data: Item Development and Pilot Study in Patients With Bulimia Nervosa and Binge-Eating Disorder [J].
Arend, Ann-Kathrin ;
Kaiser, Tim ;
Pannicke, Bjoern ;
Reichenberger, Julia ;
Naab, Silke ;
Voderholzer, Ulrich ;
Blechert, Jens .
JMIR MEDICAL INFORMATICS, 2023, 11
[8]  
Arksey H., 2005, INT J SOC RES METHOD, V8, P19, DOI DOI 10.1080/1364557032000119616
[9]   Predicting long-term outcome in anorexia nervosa: a machine learning analysis of brain structure at different stages of weight recovery [J].
Arold, Dominic ;
Bernardoni, Fabio ;
Geisler, Daniel ;
Doose, Arne ;
Uen, Volkan ;
Boehm, Ilka ;
Roessner, Veit ;
King, Joseph A. ;
Ehrlich, Stefan .
PSYCHOLOGICAL MEDICINE, 2023, 53 (16) :7827-7836
[10]   Mobile phone sensors and supervised machine learning to identify alcohol use events in young adults: Implications for just-in-time adaptive interventions [J].
Bae, Sangwon ;
Chung, Tammy ;
Ferreira, Denzil ;
Dey, Anind K. ;
Suffoletto, Brian .
ADDICTIVE BEHAVIORS, 2018, 83 :42-47