Deep learning-based acceleration of high-resolution compressed sense MR imaging of the hip

被引:0
作者
Marka, Alexander W. [1 ]
Meurer, Felix [1 ,2 ]
Twardy, Vanessa [3 ]
Graf, Markus [1 ]
Ardjomand, Saba Ebrahimi [1 ]
Weiss, Kilian [4 ]
Makowski, Marcus R. [1 ]
Gersing, Alexandra S. [5 ,6 ]
Karampinos, Dimitrios C. [1 ]
Neumann, Jan [1 ,2 ,7 ]
Woertler, Klaus [1 ,2 ]
Banke, Ingo J. [3 ]
Foreman, Sarah C. [8 ]
机构
[1] Tech Univ Munich TUM, TUM Klinikum, Sch Med & Hlth, Inst Diagnost & Intervent Radiol, Ismaninger Str 22, D-81675 Munich, Germany
[2] Tech Univ Munich, TUM Klinikum, Sch Med & Hlth, Musculoskeletal Radiol Sect, Ismaninger Str 22, D-81675 Munich, Germany
[3] Tech Univ Munich, Klinikum Rechts Isar, Clin Orthoped & Sports Orthoped, Ismaninger Str 22, D-81675 Munich, Germany
[4] Philips GmbH, Rontgenstr 22, D-22335 Hamburg, Germany
[5] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, 505 Parnassus Ave, San Francisco, CA 94143 USA
[6] Ludwig Maximilians Univ Munchen, LMU Univ Hosp, Dept Neuroradiol, Marchioninistr 13, D-80337 Munich, Germany
[7] Kantonsspital Graubunden, KSGR, Loestr 170, CH-7000 Chur, Switzerland
[8] Tech Univ Munich TUM, TUM Klinikum, Sch Med & Hlth, Dept Diagnost & Intervent Neuroradiol, Ismaninger Str 22, D-81675 Munich, Germany
关键词
Hip; MRI; Deep learning; Compressed Sense; INTELLIGENCE; LESIONS; PAIN;
D O I
10.1016/j.ejro.2025.100656
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To evaluate a Compressed Sense Artificial Intelligence framework (CSAI) incorporating parallel imaging, compressed sense (CS), and deep learning for high-resolution MRI of the hip, comparing it with standard-resolution CS imaging. Methods: Thirty-two patients with femoroacetabular impingement syndrome underwent 3 T MRI scans. Coronal and sagittal intermediate-weighted TSE sequences with fat saturation were acquired using CS (0.6 x0.8 mm resolution) and CSAI (0.3 x0.4 mm resolution) protocols in comparable acquisition times (7:49 vs. 8:07 minutes for both planes). Two readers systematically assessed the depiction of the acetabular and femoral cartilage (in five cartilage zones), labrum, ligamentum capitis femoris, and bone using a five-point Likert scale. Diagnostic confidence and abnormality detection were recorded and analyzed using the Wilcoxon signed-rank test. Results: CSAI significantly improved the cartilage depiction across most cartilage zones compared to CS. Overall Likert scores were 4.0 f 0.2 (CS) vs 4.2 f 0.6 (CSAI) for reader 1 and 4.0 f 0.2 (CS) vs 4.3 f 0.6 (CSAI) for reader 2 (p <= 0.001). Diagnostic confidence increased from 3.5 f 0.7 and 3.9 f 0.6 (CS) to 4.0 f 0.6 and 4.1 f 0.7 (CSAI) for readers 1 and 2, respectively (p <= 0.001). More cartilage lesions were detected with CSAI, with significant improvements in diagnostic confidence in certain cartilage zones such as femoral zone C and D for both readers. Labrum and ligamentum capitis femoris depiction remained similar, while bone depiction was rated lower. No abnormalities detected in CS were missed in CSAI. Conclusion: CSAI provides high-resolution hip MR images with enhanced cartilage depiction without extending acquisition times, potentially enabling more precise hip cartilage assessment.
引用
收藏
页数:9
相关论文
共 42 条
[1]   Acetabular cartilage repair: state of the art in surgical treatment [J].
Bagheri, Kian ;
Sierra, Frank ;
Jamali, Amir A. .
JOURNAL OF HIP PRESERVATION SURGERY, 2020, 7 (02) :205-224
[2]   Imaging of developmental dysplasia of the hip: ultrasound, radiography and magnetic resonance imaging [J].
Barrera, Christian A. ;
Cohen, Sara A. ;
Sankar, Wudbhav N. ;
Ho-Fung, Victor M. ;
Sze, Raymond W. ;
Nguyen, Jie C. .
PEDIATRIC RADIOLOGY, 2019, 49 (12) :1652-1668
[3]   From Compressed-Sensing to Artificial Intelligence-Based Cardiac MRI Reconstruction [J].
Bustin, Aurelien ;
Fuin, Niccolo ;
Botnar, Rene M. ;
Prieto, Claudia .
FRONTIERS IN CARDIOVASCULAR MEDICINE, 2020, 7
[4]   The Lisbon Agreement on Femoroacetabular Impingement Imaging-part 3: imaging techniques [J].
Castro, Miguel O. ;
Mascarenhas, Vasco V. ;
Afonso, P. Diana ;
Rego, Paulo ;
Schmaranzer, Florian ;
Sutter, Reto ;
Kassarjian, Ara ;
Sconfienza, Luca ;
Dienst, Michael ;
Ayeni, Olufemi R. ;
Beaule, Paul E. ;
Dantas, Pedro ;
Lalam, Radhesh ;
Weber, Marc-Andre ;
Vanhoenacker, Filip M. ;
Dietrich, Tobias Johannes ;
Jans, Lennart ;
Robinson, Philip ;
Karantanas, Apostolos H. ;
Sudol-Szopinska, Iwona ;
Anderson, Suzanne ;
Noebauer-Huhmann, Iris ;
Marin-Pena, Oliver ;
Collado, Diego ;
Tey-Pons, Marc ;
Schmaranzer, Ehrenfried ;
Padron, Mario ;
Kramer, Josef ;
Zingg, Patrick O. ;
De Maeseneer, Michel ;
Llopis, Eva .
EUROPEAN RADIOLOGY, 2021, 31 (07) :4652-4668
[5]  
Chamberlain R, 2021, AM FAM PHYSICIAN, V103, P81
[6]   Super-resolution musculoskeletal MRI using deep learning [J].
Chaudhari, Akshay S. ;
Fang, Zhongnan ;
Kogan, Feliks ;
Wood, Jeff ;
Stevens, Kathryn J. ;
Gibbons, Eric K. ;
Lee, Jin Hyung ;
Gold, Garry E. ;
Hargreaves, Brian A. .
MAGNETIC RESONANCE IN MEDICINE, 2018, 80 (05) :2139-2154
[7]   CT and MR imaging of the hip [J].
Conway, WF ;
Totty, WG ;
McEnery, KW .
RADIOLOGY, 1996, 198 (02) :297-307
[8]   Parallel MR imaging [J].
Deshmane, Anagha ;
Gulani, Vikas ;
Griswold, Mark A. ;
Seiberlich, Nicole .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2012, 36 (01) :55-72
[9]   Measurement of signal-to-noise ratios in MR images: Influence of multichannel coils, parallel imaging, and reconstruction filters [J].
Dietrich, Olaf ;
Raya, Jose G. ;
Reeder, Scott B. ;
Reiser, Maximilian F. ;
Schoenberg, Stefan O. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2007, 26 (02) :375-385
[10]   Reconstruction of shoulder MRI using deep learning and compressed sensing: a validation study on healthy volunteers [J].
Dratsch, Thomas ;
Siedek, Florian ;
Zaeske, Charlotte ;
Sonnabend, Kristina ;
Rauen, Philip ;
Terzis, Robert ;
Hahnfeldt, Robert ;
Maintz, David ;
Persigehl, Thorsten ;
Bratke, Grischa ;
Iuga, Andra .
EUROPEAN RADIOLOGY EXPERIMENTAL, 2023, 7 (01)