Prediction of cancer cell line-specific synergistic drug combinations based on multi-omics data

被引:0
作者
Chen, Jiaqi [1 ]
Han, Huirui [1 ]
Li, Lingxu [1 ]
Chen, Zhengxin [1 ]
Liu, Xinying [1 ]
Li, Tianyi [1 ]
Wang, Xuefeng [1 ]
Wang, Qibin [1 ]
Zhang, Ruijie [1 ]
Feng, Dehua [1 ]
Yu, Lei [1 ]
Li, Xia [1 ]
Wang, Limei [1 ]
Li, Bing [1 ]
Li, Jin [1 ]
机构
[1] Hainan Med Univ, Coll Biomed Informat & Engn, Hainan Engn Res Ctr Hlth Big Data, Kidney Dis Res Inst Affiliated Hosp 2, Haikou, Hainan, Peoples R China
基金
中国国家自然科学基金;
关键词
Drug synergy prediction; Multi-omics; Machine learning; Cancer; Drug combination; CYTOTOXICITY; DESIGN;
D O I
10.7717/peerj.19078
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Compared to single-drug therapy, combination therapy involves the use of two or more drugs to reduce drug dosage, decrease drug toxicity, and improve treatment efficacy. We developed an extreme gradient boosting (XGBoost)-based drug-drug cell line prediction model (XDDC) to predict synergistic drug combinations. XDDC was based on XGBoost and used one of the largest drug combination datasets, NCI-ALMANAC. In XDDC, drug chemical structures, adverse drug reactions, and target information were selected as drug features; gene expression, methylation, mutations, copy number variations, and RNA interference data were used as cell line features; and pathway information was incorporated to link drug features and cell line features. XDDC improved the interpretability of drug combination features and outperformed other machine learning methods. It achieved an area under the curve (AUC) of 0.966 +/- 0.002 and an AUPR of 0.957 +/- 0.002 when cross-validated on NCI-ALMANAC data. Different types of omics data were evaluated and compared in the model. Literature and experimental verification confirmed some of our predictions. XDDC could help medical professionals to rapidly screen synergistic drug combinations against specific cancer cell lines.
引用
收藏
页数:26
相关论文
共 42 条
[31]   Machine learning approaches for drug combination therapies [J].
Paltun, Betul Guvenc ;
Kaski, Samuel ;
Mamitsuka, Hiroshi .
BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
[32]   Response of chronic hypoxic cells to low dose-rate irradiation [J].
Pettersen, E. O. ;
Bjorhovde, I. ;
Sovik, A. ;
Edin, N. F. J. ;
Zachar, V. ;
Hole, E. O. ;
Sandvik, J. A. ;
Ebbesen, P. .
INTERNATIONAL JOURNAL OF RADIATION BIOLOGY, 2007, 83 (05) :331-345
[33]   DeepSynergy: predicting anti-cancer drug synergy with Deep Learning [J].
Preuer, Kristina ;
Lewis, Richard P. I. ;
Hochreiter, Sepp ;
Bender, Andreas ;
Bulusu, Krishna C. ;
Klambauer, Guenter .
BIOINFORMATICS, 2018, 34 (09) :1538-1546
[34]   Combination Therapy and the Evolution of Resistance: The Theoretical Merits of Synergism and Antagonism in Cancer [J].
Saputra, Elysia C. ;
Huang, Lu ;
Chen, Yihui ;
Tucker-Kellogg, Lisa .
CANCER RESEARCH, 2018, 78 (09) :2419-2431
[35]  
SWEATMAN TW, 1987, CANCER CHEMOTH PHARM, V19, P201
[36]   A view on drug resistance in cancer [J].
Vasan, Neil ;
Baselga, Jose ;
Hyman, David M. .
NATURE, 2019, 575 (7782) :299-309
[37]   Identification of prognostic signature of non-small cell lung cancer based on TCGA methylation data [J].
Wang, Yifan ;
Wang, Ying ;
Zhang, Yongjun .
SCIENTIFIC REPORTS, 2020, 10 (01)
[38]   DrugBank 5.0: a major update to the DrugBank database for 2018 [J].
Wishart, David S. ;
Feunang, Yannick D. ;
Guo, An C. ;
Lo, Elvis J. ;
Marcu, Ana ;
Grant, Jason R. ;
Sajed, Tanvir ;
Johnson, Daniel ;
Li, Carin ;
Sayeeda, Zinat ;
Assempour, Nazanin ;
Iynkkaran, Ithayavani ;
Liu, Yifeng ;
Maciejewski, Adam ;
Gale, Nicola ;
Wilson, Alex ;
Chin, Lucy ;
Cummings, Ryan ;
Le, Diana ;
Pon, Allison ;
Knox, Craig ;
Wilson, Michael .
NUCLEIC ACIDS RESEARCH, 2018, 46 (D1) :D1074-D1082
[39]   Predicting tumor cell line response to drug pairs with deep learning [J].
Xia, Fangfang ;
Shukla, Maulik ;
Brettin, Thomas ;
Garcia-Cardona, Cristina ;
Cohn, Judith ;
Allen, Jonathan E. ;
Maslov, Sergei ;
Holbeck, Susan L. ;
Doroshow, James H. ;
Evrard, Yvonne A. ;
Stahlberg, Eric A. ;
Stevens, Rick L. .
BMC BIOINFORMATICS, 2018, 19
[40]   Searching for Drug Synergy in Complex Dose-Response Landscapes Using an Interaction Potency Model [J].
Yadav, Bhagwan ;
Wennerberg, Krister ;
Aittokallio, Tero ;
Tang, Jing .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2015, 13 :504-513