Machine-learning based Computed Tomography Radiomics Nomogram for Predicting Perineural Invasion in Gastric Cancer

被引:0
作者
Huang, Pei [1 ,2 ]
Li, Sheng [1 ,3 ]
Deng, Zhikang [1 ,2 ]
Hu, Fangfang [2 ]
Jin, Di [1 ,2 ]
Xiong, Situ [1 ,3 ]
Fan, Bing [2 ,3 ]
机构
[1] Nanchang Univ, Med Coll, Nanchang, Peoples R China
[2] Jiangxi Prov Peoples Hosp, Affiliated Hosp 1, Nanchang Med Coll, Dept Radiol, Nanchang, Peoples R China
[3] Nanchang Univ, Affiliated Hosp 1, Nanchang 330000, Peoples R China
关键词
Gastric cancer; Perineural invasion; Machine learning; Nomogram; Radiomics; Contrast-enhanced computed tomography; SURVIVAL;
D O I
10.2174/0115734056323323250102073559
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objective The aim of this study was to develop and validate predictive models for perineural invasion (PNI) in gastric cancer (GC) using clinical factors and radiomics features derived from contrast-enhanced computed tomography (CE-CT) scans and to compare the performance of these models.Methods This study included 205 GC patients, who were randomly divided into a training set (n=143) and a validation set (n=62) in a 7:3 ratio. Optimal radiomics features were selected using the least absolute shrinkage and selection operator (LASSO) algorithm. A radiomics model was constructed utilizing the optimal among five machine learning filters, and a radiomics score (rad-score) was computed for each participant. A clinical model was built based on clinical factors identified through multivariate logistic regression. Independent clinical factors were combined with the rad-score to create a combined radiomics nomogram. The discrimination ability of the models was evaluated by receiver operating characteristic (ROC) curves and the DeLong test.Results Independent predictive factors of the clinical model included tumor T stage, N stage, and tumor differentiation, with AUC values of 0.777 and 0.809 in the training and validation sets. The radiomics model was constructed using the support vector machine (SVM) classifier with the best AUC (0.875 in the training set and 0.826 in the validation set). The combined radiomics nomogram, which combines independent clinical predictors and the rad-score, demonstrated better predictive performance (AUC=0.889 in the training set; AUC=0.885 in the validation set).Conclusion The nomogram integrating independent clinical predictors and CE-CT radiomics was constructed to predict PNI in GC. This model demonstrated favorable performance and could potentially assist in prognosis evaluation and clinical decision-making for GC patients.
引用
收藏
页数:11
相关论文
共 32 条
[1]   Gastric Cancer, Version 2.2013 Featured Updates to the NCCN Guidelines [J].
Ajani, Jaffer A. ;
Bentrem, David J. ;
Besh, Stephen ;
D'Amico, Thomas A. ;
Das, Prajnan ;
Denlinger, Crystal ;
Fakih, Marwan G. ;
Fuchs, Charles S. ;
Gerdes, Hans ;
Glasgow, Robert E. ;
Hayman, James A. ;
Hofstetter, Wayne L. ;
Ilson, David H. ;
Keswani, Rajesh N. ;
Kleinberg, Lawrence R. ;
Korn, W. Michael ;
Lockhart, A. Craig ;
Meredith, Kenneth ;
Mulcahy, Mary F. ;
Orringer, Mark B. ;
Posey, James A. ;
Sasson, Aaron R. ;
Scott, Walter J. ;
Strong, Vivian E. ;
Varghese, Thomas K., Jr. ;
Warren, Graham ;
Washington, Mary Kay ;
Willett, Christopher ;
Wright, Cameron D. ;
McMillian, Nicole R. ;
Sundar, Hema .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2013, 11 (05) :531-546
[2]   Influence of perineural invasion in predicting overall survival and disease-free survival in patients With locally advanced gastric cancer [J].
Aurello, Paolo ;
Berardi, Giammauro ;
Tierno, Simone Maria ;
Vinciguerra, Gian Luca Rampioni ;
Socciarelli, Fabio ;
Laracca, Giovanni Guglielmo ;
Giulitti, Diego ;
Pilozzi, Emanuela ;
Ramacciato, Giovanni .
AMERICAN JOURNAL OF SURGERY, 2017, 213 (04) :748-753
[3]   Prognostic Significance of Perineural Invasion in Patients with Gastric Cancer Who Underwent Curative Resection [J].
Bilici, Ahmet ;
Seker, Mesut ;
Ustaalioglu, Bala Basak Oven ;
Kefeli, Umut ;
Yildirim, Emre ;
Yavuzer, Dilek ;
Aydin, Fatih Muhammed ;
Salepci, Taflan ;
Oncel, Mustafa ;
Gumus, Mahmut .
ANNALS OF SURGICAL ONCOLOGY, 2010, 17 (08) :2037-2044
[4]   MRI-Derived Radiomics to Guide Post-operative Management for High-Risk Prostate Cancer [J].
Bourbonne, Vincent ;
Vallieres, Martin ;
Lucia, Francois ;
Doucet, Laurent ;
Visvikis, Dimitris ;
Tissot, Valentin ;
Pradier, Olivier ;
Hatt, Mathieu ;
Schick, Ulrike .
FRONTIERS IN ONCOLOGY, 2019, 9
[5]   Chemotherapy versus chemoradiotherapy after surgery and preoperative chemotherapy for resectable gastric cancer (CRITICS): an international, open-label, randomised phase 3 trial [J].
Cats, Annemieke ;
Jansen, Edwin P. M. ;
van Grieken, Nicole C. T. ;
Sikorska, Karolina ;
Lind, Pehr ;
Nordsmark, Marianne ;
Kranenbarg, Elma Meershoek-Klein ;
Boot, Henk ;
Trip, Anouk K. ;
Swellengrebel, H. A. Maurits ;
van Laarhoven, Hanneke W. M. ;
Putter, Hein ;
van Sandick, Johanna W. ;
Henegouwen, Mark I. van Berge ;
Hartgrink, Henk H. ;
van Tinteren, Harm ;
van de Velde, Cornelis J. H. ;
Verheij, Marcel .
LANCET ONCOLOGY, 2018, 19 (05) :616-628
[6]   An MRI-based radiomics-clinical nomogram for the overall survival prediction in patients with hypopharyngeal squamous cell carcinoma: a multi-cohort study [J].
Chen, Juan ;
Lu, Shanhong ;
Mao, Yitao ;
Tan, Lei ;
Li, Guo ;
Gao, Yan ;
Tan, Pingqing ;
Huang, Donghai ;
Zhang, Xin ;
Qiu, Yuanzheng ;
Liu, Yong .
EUROPEAN RADIOLOGY, 2022, 32 (03) :1548-1557
[7]   A CT-based deep learning radiomics nomogram for predicting the response to neoadjuvant chemotherapy in patients with locally advanced gastric cancer: A multicenter cohort study [J].
Cui, Yanfen ;
Zhang, Jiayi ;
Li, Zhenhui ;
Wei, Kaikai ;
Lei, Ye ;
Ren, Jialiang ;
Wu, Lei ;
Shi, Zhenwei ;
Meng, Xiaochun ;
Yang, Xiaotang ;
Gao, Xin .
ECLINICALMEDICINE, 2022, 46
[8]   Multiparametric MRI and Machine Learning Based Radiomic Models for Preoperative Prediction of Multiple Biological Characteristics in Prostate Cancer [J].
Fan, Xuhui ;
Xie, Ni ;
Chen, Jingwen ;
Li, Tiewen ;
Cao, Rong ;
Yu, Hongwei ;
He, Meijuan ;
Wang, Zilin ;
Wang, Yihui ;
Liu, Hao ;
Wang, Han ;
Yin, Xiaorui .
FRONTIERS IN ONCOLOGY, 2022, 12
[9]   The value of machine learning based radiomics model in preoperative detection of perineural invasion in gastric cancer: a two-center study [J].
Gao, Xujie ;
Cui, Jingli ;
Wang, Lingwei ;
Wang, Qiuyan ;
Ma, Tingting ;
Yang, Jilong ;
Ye, Zhaoxiang .
FRONTIERS IN ONCOLOGY, 2023, 13
[10]   Role of [68Ga]Ga-PSMA-11 PET radiomics to predict post-surgical ISUP grade in primary prostate cancer [J].
Ghezzo, Samuele ;
Mapelli, Paola ;
Bezzi, Carolina ;
Samanes Gajate, Ana Maria ;
Brembilla, Giorgio ;
Gotuzzo, Irene ;
Russo, Tommaso ;
Preza, Erik ;
Cucchiara, Vito ;
Ahmed, Naghia ;
Neri, Ilaria ;
Mongardi, Sofia ;
Freschi, Massimo ;
Briganti, Alberto ;
De Cobelli, Francesco ;
Gianolli, Luigi ;
Scifo, Paola ;
Picchio, Maria .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2023, 50 (08) :2548-2560