Research on the preparation and thermal insulation flame retardant properties of polyimide composite aerogel

被引:1
作者
Zhang, Qingtao [1 ,2 ,3 ,7 ]
Wang, Bo [1 ,7 ]
Zhang, Yunjian [4 ,8 ]
Liu, Caisen [1 ,7 ]
Wang, Wenqiang [5 ,9 ]
Qin, Xueqing [6 ,10 ]
Wang, Zhixin [1 ,7 ]
机构
[1] Shandong Univ Aeronaut, Intelligent Construct Coll, Binzhou 256600, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Safety & Environm Engn, Qingdao 266590, Peoples R China
[3] Jingbo Agrochem Technol Co Ltd, Binzhou 256500, Peoples R China
[4] Bur Emergency Management Huimin Cty, Binzhou 251700, Peoples R China
[5] Binzhou City Safety Evaluat Ctr Co Ltd, Binzhou 256600, Peoples R China
[6] Binzhou Construct Engn Construct Plan Review Ctr, Binzhou 256600, Peoples R China
[7] Shandong Univ Aeronaut, Intelligent Construct Coll, 391 Huanghe 5th Rd, Binzhou 256600, Shandong, Peoples R China
[8] Bur Emergency Management Huimin Cty, 247 Wudingfu Rd, Binzhou 251700, Shandong Prov, Peoples R China
[9] Binzhou City Safety Evaluat Ctr Co Ltd, Binzhou 256600, Shandong, Peoples R China
[10] Municipal Housing & Construct Bur, Binzhou Construct Engn Construct Plan Review Ctr, Third Floor 355,Huanghe 5th Rd, Binzhou, Shandong Prov, Peoples R China
关键词
Polyimide; PI-AS aerogel; Thermal insulation and flame retardant; Microscopic mechanism;
D O I
10.1016/j.polymdegradstab.2025.111480
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Polyimide aerogels, known for being lightweight, high-temperature resistant, and low thermal conductivity organic aerogels, have found applications in the aerospace field. However, their flame-retardant properties are not ideal. Therefore, this research uses polyimide gel as the base, with phytic acid and boron nitride nanosheets as reinforcing phases, and incorporates expanded perlite to prepare polyimide composite (PI-AS) aerogels. The aim is to enhance the thermal insulation and flame-retardant properties of polyimide aerogels while reducing environmental pollution. Experiments show that phytic acid can alter the pore structure of polyimide, forming a dense carbon layer after combustion that effectively improves its flame-retardancy. Additionally, it can reduce the thermal conductivity of the aerogel, thereby enhancing its thermal insulation effect. Meanwhile, the addition of boron nitride nanosheets increases the compressive strength of the composite aerogel from 0.12 MPa to 2.04 MPa, significantly improving its mechanical properties. To further elucidate the microscopic mechanisms of thermal insulation and flame-retardancy in this composite aerogel, molecular dynamics theory was employed to investigate the microscopic diffusion process of nitrogen molecules within the composite aerogel under different temperature conditions, confirming the stability of the aerogel structure at low temperatures.
引用
收藏
页数:14
相关论文
共 36 条
[1]   Anisotropic thermally superinsulating boron nitride composite aerogel for building thermal management [J].
Adegun, Miracle Hope ;
Chan, Kit-Ying ;
Yang, Jie ;
Venkatesan, Harun ;
Kim, Eunyoung ;
Zhang, Heng ;
Shen, Xi ;
Yang, Jinglei ;
Kim, Jang-Kyo .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2023, 169
[2]   Fully biomass-based aerogels with ultrahigh mechanical modulus, enhanced flame retardancy, and great thermal insulation applications [J].
Cao, Min ;
Liu, Bo-Wen ;
Zhang, Lin ;
Peng, Zi-Chen ;
Zhang, Yi-Ying ;
Wang, Han ;
Zhao, Hai-Bo ;
Wang, Yu-Zhong .
COMPOSITES PART B-ENGINEERING, 2021, 225
[3]   Functional biomass/biological macromolecular phase change composites and their applications in different scenarios: A review [J].
Cao, Yan ;
Su, Jingtao ;
Xiao, Yongshuang ;
Ren, Juanna ;
Algadi, Hassan ;
Yeszhanova, Elmira ;
Sartayeva, Akmaral ;
Huang, Jintao ;
Guo, Zhanhu ;
Tynybekov, Bekzat ;
Min, Yonggang .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2025, 306
[4]   High-performance Polyimide/Polypyrrole-CNTs@PEG composites for integrated thermal management and enhanced electromagnetic wave absorption [J].
Cao, Yan ;
Zhao, Zhaozhang ;
Zeng, Xinfei ;
Teng, Jiaxin ;
Huang, Jintao ;
Min, Yonggang .
ADVANCED COMPOSITES AND HYBRID MATERIALS, 2025, 8 (01)
[5]   Flexible Polyimide Aerogels Derived from the Use of a Neopentyl Spacer in the Backbone [J].
Cashman, Jessica L. ;
Nguyen, Baochau N. ;
Dosa, Bushara ;
Meador, Mary Ann B. .
ACS APPLIED POLYMER MATERIALS, 2020, 2 (06) :2179-2189
[6]   Carbon foam-reinforced polyimide aerogel composites for thermal insulation with reduced shrinkage [J].
Chen, Weiwang ;
Wan, Mengmeng ;
Liu, Sha ;
Tang, Yating ;
Xu, Qian .
JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2024, 109 (01) :128-136
[7]   Development of polyimide aerogel stock shapes through polyimide aerogel particles [J].
Dayarian, Shima ;
Yang, Liu ;
Majedi Far, Hojat .
JOURNAL OF POROUS MATERIALS, 2023, 30 (06) :2101-2112
[8]   Environment friendly biomass composite aerogel with reinforced mechanical properties for thermal insulation and flame retardancy application [J].
Deng, Tao ;
Li, Hanxin ;
Li, Yufeng ;
Jiang, Chongwen ;
He, Yu ;
Yang, Tao ;
Zhu, Lin ;
Xie, Le .
POLYMER ENGINEERING AND SCIENCE, 2023, 63 (12) :4084-4097
[9]   Flexible Polyimide Aerogels with Dodecane Links in the Backbone Structure [J].
Guo, Haiquan ;
Meador, Mary Ann B. ;
Cashman, Jessica L. ;
Tresp, David ;
Dosa, Bushara ;
Scheiman, Daniel A. ;
McCorkle, Linda S. .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (29) :33288-33296
[10]   Polyimide-based porous carbon/Ni nano-particle composites prepared by phase separation method with broadband absorption characteristics [J].
Huang, Jintao ;
Zeng, Xinfei ;
Yu, Wentao ;
Zhang, Haichen ;
Min, Yonggang .
DIAMOND AND RELATED MATERIALS, 2025, 152