Application of Machine Learning Algorithms for Risk Stratification and Efficacy Evaluation in Cervical Cancer Screening among the ASCUS/LSIL Population: Evidence from the Korean HPV Cohort Study

被引:0
作者
Song, Heekyoung [1 ]
Lee, Hong Yeon [2 ]
Oh, Shin Ah [3 ]
Seong, Jaehyun [4 ]
Hur, Soo Young [5 ,6 ]
Choi, Youn Jin [5 ,6 ]
机构
[1] Catholic Univ Korea, Incheon St Marys Hosp, Coll Med, Dept Obstet & Gynecol, Seoul, South Korea
[2] Catholic Univ Korea, Yeouido St Marys Hosp, Coll Med, Dept Obstet & Gynecol, Seoul, South Korea
[3] Columbia Univ, Dept Stat, New York, NY USA
[4] Korea Natl Inst Hlth, Div Clin Res, Ctr Emerging Virus Res, Natl Inst Infect Dis, Cheongju, South Korea
[5] Catholic Univ Korea, Seoul St Marys Hosp, Coll Med, Dept Obstet & Gynecol, 222 Banpo Daero, Seoul 06591, South Korea
[6] Catholic Univ Korea, Canc Res Inst, Coll Med, Seoul, South Korea
来源
CANCER RESEARCH AND TREATMENT | 2025年 / 57卷 / 02期
基金
新加坡国家研究基金会;
关键词
Human papillomavirus; Risk stratification; Atypical squamous cells of the cervix; Squamous intraepithelial lesions; HUMAN-PAPILLOMAVIRUS INFECTION; EPIDEMIOLOGY; MANAGEMENT; NEOPLASIA;
D O I
10.4143/crt.2024.465; 10.4143/crt.2024.465
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose We assessed human papillomavirus (HPV) genotype-based risk stratification and the efficacy of cytology testing for cervical cancer screening in patients with atypical squamous cells of undetermined significance (ASCUS)/low-grade squamous intraepithelial lesion (LSIL). Materials and Methods Between 2010 and 2021, we monitored 1,273 HPV-positive women with ASCUS/LSIL every 6 months for up to 60 months. HPV infections were categorized as persistent (HPV positivity consistently observed post-enrollment), negative (HPV negativity consistently observed post-enrollment), or non-persistent (neither consistently positive nor negative). HPV genotypes were grouped into high-risk (Hr) groups 1(types 16, 18, 31, 33, 45, 52, and 58) and 2 (types 35, 39, 51, 56, 59, 66, and 68) and a low-risk group. Hr1 was subdivided into types (a) 16 and 18; (b) 31, 33, and 45; and (c) 52 and 58. Cox regression and machine learning (ML) algorithms were used to analyze progression rates. Results Among 1,273 participants, 17.6% with persistent HPV infections experienced disease progression versus no progression in the HPV-negative group (p < 0.001). Cox analysis revealed the highest hazard ratios (HRs) for Hr1-a (11.6, p < 0.001), followed by Hr1b (9.26, p < 0.001) and Hr1-c (7.21, p < 0.001). HRs peaked at 12-24 months, with Hr1-a maintaining significance at 24-36 months (10.7, p=0.034). ML analysis identified the final cytology change pattern as the most significantfactor, with 14-15 months the optimal time for detecting progression from the first examination. Conclusion In ASCUS/LSIL cases, follow-up strategies should be based on HPV risk types. Annual follow-up was the most effective monitoring for detecting progression/regression.
引用
收藏
页码:547 / 557
页数:11
相关论文
共 30 条
[1]  
[Anonymous], 2024, The Brussels Times
[2]  
[Anonymous], 2022, IARC handbooks of cancer prevention, V18
[3]  
[Anonymous], 2021, Practice guidelines for the early detection of cervical cancer Internet
[4]   Validation of HPV triage in cytology- based cervical cancer screening for ASC-US cases using Japanese data [J].
Aoki, Eiko Saitoh ;
Saika, Kumiko ;
Kiguchi, Kazushige ;
Morisada, Tohru ;
Aoki, Daisuke .
JOURNAL OF GYNECOLOGIC ONCOLOGY, 2023, 34 (02)
[5]   The epidemiology of human papillomavirus infections [J].
Baseman, JG ;
Koutsky, LA .
JOURNAL OF CLINICAL VIROLOGY, 2005, 32 :S16-S24
[6]   An analysis of high-risk human papillomavirus DNA-negative cervical precancers in the ASCUS-LSIL triage study (ALTS) [J].
Castle, Philip E. ;
Cox, J. Thomas ;
Jeronimo, Jose .
OBSTETRICS AND GYNECOLOGY, 2008, 111 (04) :847-856
[7]   Introduction to Machine Learning, Neural Networks, and Deep Learning [J].
Choi, Rene Y. ;
Coyner, Aaron S. ;
Kalpathy-Cramer, Jayashree ;
Chiang, Michael F. ;
Campbell, J. Peter .
TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2020, 9 (02)
[8]   Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study [J].
de Sanjose, Silvia ;
Quint, Wim G. V. ;
Alemany, Laia ;
Geraets, Daan T. ;
Ellen Klaustermeier, Jo ;
Lloveras, Belen ;
Tous, Sara ;
Felix, Ana ;
Eduardo Bravo, Luis ;
Shin, Hai-Rim ;
Vallejos, Carlos S. ;
Alonso de Ruiz, Patricia ;
Lima, Marcus Aurelho ;
Guimera, Nuria ;
Clavero, Omar ;
Alejo, Maria ;
Llombart-Bosch, Antonio ;
Cheng-Yang, Chou ;
Alejandro Tatti, Silvio ;
Kasamatsu, Elena ;
Iljazovic, Ermina ;
Odida, Michael ;
Prado, Rodrigo ;
Seoud, Muhieddine ;
Grce, Magdalena ;
Usubutun, Alp ;
Jain, Asha ;
Hernandez Suarez, Gustavo Adolfo ;
Estuardo Lombardi, Luis ;
Banjo, Aekunbiola ;
Menendez, Clara ;
Javier Domingo, Efren ;
Velasco, Julio ;
Nessa, Ashrafun ;
Chichareon, Saibua C. Bunnag ;
Qiao, You Lin ;
Lerma, Enrique ;
Garland, Suzanne M. ;
Sasagawa, Toshiyuki ;
Ferrera, Annabelle ;
Hammouda, Doudja ;
Mariani, Luciano ;
Pelayo, Adela ;
Steiner, Ivo ;
Oliva, Esther ;
Meijer, Chris J. L. M. ;
Al-Jassar, Waleed Fahad ;
Cruz, Eugenia ;
Wright, Thomas C. ;
Puras, Ana .
LANCET ONCOLOGY, 2010, 11 (11) :1048-1056
[9]   A systematic review on machine learning and deep learning techniques in cancer survival prediction [J].
Deepa, P. ;
Gunavathi, C. .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2022, 174 :62-71
[10]   Cervical cancer screening for individuals at average risk: 2020 guideline update from the American Cancer Society [J].
Fontham, Elizabeth T. H. ;
Wolf, Andrew M. D. ;
Church, Timothy R. ;
Etzioni, Ruth ;
Flowers, Christopher R. ;
Herzig, Abbe ;
Guerra, Carmen E. ;
Oeffinger, Kevin C. ;
Shih, Ya-Chen Tina ;
Walter, Louise C. ;
Kim, Jane J. ;
Andrews, Kimberly S. ;
DeSantis, Carol E. ;
Fedewa, Stacey A. ;
Manassaram-Baptiste, Deana ;
Saslow, Debbie ;
Wender, Richard C. ;
Smith, Robert A. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2020, 70 (05) :321-346