The CIP-Soroban method is an excellent adaptive meshless method capable of solving advection problems with 3rd-order accuracy by combining the Constrained Interpolation Profile/Cubic Interpolated Pseudo-particle (CIP) method. This study proposes a modified version of the CIP-Soroban method specifically designed to address severe compressible hydrodynamic scenarios. The proposed method includes a material distinguishing approach, incorporates a modified form of monitoring functions for grid generation, utilizes a staggered grid arrangement, incorporates the Maximum and minimum Bounds method, solves non-advection terms using a finite difference method, and employs an adjusted procedure for stably solving the governing equations. We applied the modified CIP-Soroban method to simulate the implosion process in inertial confinement fusion (ICF), which is commonly modeled by compressible fluid and has the problems of large gradients of physical values and strong nonlinearity for stable and accurate numerical analysis. Implosion simulations were performed using a series of grids with increasing resolutions, ranging from coarse to fine grid settings, as one of the application examples. The results indicated that compared to the conventional uniform grid CIP method, the modified CIP-Soroban method reduced computational costs (calculation time, memory occupancy, and grid number) for obtaining the same precision results.