Modified CIP-Soroban Method and Its Application in Implosion Process of Inertial Confinement Fusion

被引:0
作者
Lin, Zhehao [1 ]
Takahashi, Kazumasa [1 ]
Sasaki, Toru [1 ]
Kikuchi, Takashi [1 ]
Sunahara, Atsushi [2 ]
机构
[1] Nagaoka Univ Technol, Nagaoka, Niigata, Japan
[2] Purdue Univ, W Lafayette, IN USA
关键词
adaptive mesh refinement; adaptive meshless method; CIP-Soroban method; compressible hydrodynamics; computational costs; inertial confinement fusion; CUBIC-POLYNOMIAL INTERPOLATION; HYPERBOLIC-EQUATIONS; UNIVERSAL SOLVER; COMPUTATION; ALGORITHMS; TARGET;
D O I
10.1002/fld.5392
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The CIP-Soroban method is an excellent adaptive meshless method capable of solving advection problems with 3rd-order accuracy by combining the Constrained Interpolation Profile/Cubic Interpolated Pseudo-particle (CIP) method. This study proposes a modified version of the CIP-Soroban method specifically designed to address severe compressible hydrodynamic scenarios. The proposed method includes a material distinguishing approach, incorporates a modified form of monitoring functions for grid generation, utilizes a staggered grid arrangement, incorporates the Maximum and minimum Bounds method, solves non-advection terms using a finite difference method, and employs an adjusted procedure for stably solving the governing equations. We applied the modified CIP-Soroban method to simulate the implosion process in inertial confinement fusion (ICF), which is commonly modeled by compressible fluid and has the problems of large gradients of physical values and strong nonlinearity for stable and accurate numerical analysis. Implosion simulations were performed using a series of grids with increasing resolutions, ranging from coarse to fine grid settings, as one of the application examples. The results indicated that compared to the conventional uniform grid CIP method, the modified CIP-Soroban method reduced computational costs (calculation time, memory occupancy, and grid number) for obtaining the same precision results.
引用
收藏
页码:1120 / 1141
页数:22
相关论文
共 38 条
[1]   Achievement of Target Gain Larger than Unity in an Inertial Fusion Experiment [J].
Abu-Shawareb, H. ;
Acree, R. ;
Adams, P. ;
Adams, J. ;
Addis, B. ;
Aden, R. ;
Adrian, P. ;
Afeyan, B. B. ;
Aggleton, M. ;
Aghaian, L. ;
Aguirre, A. ;
Aikens, D. ;
Akre, J. ;
Albert, F. ;
Albrecht, M. ;
Albright, B. J. ;
Albritton, J. ;
Alcala, J. ;
Alday, C., Jr. ;
Alessi, D. A. ;
Alexander, N. ;
Alfonso, J. ;
Alfonso, N. ;
Alger, E. ;
Ali, S. J. ;
Ali, Z. A. ;
Allen, A. ;
Alley, W. E. ;
Amala, P. ;
Amendt, P. A. ;
Amick, P. ;
Ammula, S. ;
Amorin, C. ;
Ampleford, D. J. ;
Anderson, R. W. ;
Anklam, T. ;
Antipa, N. ;
Appelbe, B. ;
Aracne-Ruddle, C. ;
Araya, E. ;
Archuleta, T. N. ;
Arend, M. ;
Arnold, P. ;
Arnold, T. ;
Arsenlis, A. ;
Asay, J. ;
Atherton, L. J. ;
Atkinson, D. ;
Atkinson, R. ;
Auerbach, M. .
PHYSICAL REVIEW LETTERS, 2024, 132 (06)
[2]  
Aoki T., 1995, Computational Fluid Dynamics Journal, V4, P279
[3]  
Atzeni S., 2009, PHYINERTIAL FUSION
[4]   ADAPTIVE MESH REFINEMENT FOR HYPERBOLIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
BERGER, MJ ;
OLIGER, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 53 (03) :484-512
[5]  
BODNER SE, 1981, J FUSION ENERG, V1, P221, DOI DOI 10.1007/BF01050355
[6]   ON THE SOLUTION OF NONLINEAR HYPERBOLIC DIFFERENTIAL EQUATIONS BY FINITE DIFFERENCES [J].
COURANT, R ;
ISAACSON, E ;
REES, M .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1952, 5 (03) :243-255
[7]  
Donea J., 2004, Encyclopedia of computational mechanics, DOI DOI 10.1002/0470091355.ECM009
[8]   Arbitrary Lagrangian-Eulerian method for Navier-Stokes equations with moving boundaries [J].
Duarte, F ;
Gormaz, R ;
Natesan, S .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (45-47) :4819-4836
[9]   VOLUME OF FLUID (VOF) METHOD FOR THE DYNAMICS OF FREE BOUNDARIES [J].
HIRT, CW ;
NICHOLS, BD .
JOURNAL OF COMPUTATIONAL PHYSICS, 1981, 39 (01) :201-225