Korovkin type theorem for the functions defined in the Prism and the corresponding Meyer-Konig and Zeller operators

被引:0
作者
Ozarslan, Mehmet Ali [1 ]
Kara, Mustafa [1 ]
机构
[1] Eastern Mediterranean Univ, Mersin 10, Gazimagusa, Turkiye
关键词
Meyer-Konig and Zeller operators; Korovkin Type Theorem; positive linear operators; modulus of continuity; generating function; APPROXIMATION PROPERTIES; ASYMPTOTIC-EXPANSION; MATRIX SUMMABILITY; MOMENTS; VARIANT;
D O I
10.2298/FIL2432501O
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider Meyer-Konig and Zeller (MKZ) operators defined in the prism. We prove a new Korovkin type theorem by using appropriate auxiliary test function and investigate the uniform approximation of these operators. We obtain the order of approximation in terms of the modulus of continuity and modified Lipschitz functions. Finally, we introduce the more general form of the operators and study their approximation properties by obtaining functional partial differential equation which help us to calculate the moments easily.
引用
收藏
页码:11501 / 11516
页数:16
相关论文
共 33 条
[1]   The complete asymptotic expansion for a general Durrmeyer variant of the Meyer-Konig and Zeller operators [J].
Abel, U ;
Gupta, V ;
Ivan, M .
MATHEMATICAL AND COMPUTER MODELLING, 2004, 40 (7-8) :867-875
[2]   THE MOMENTS FOR THE MEYER-KONIG AND ZELLER OPERATORS [J].
ABEL, U .
JOURNAL OF APPROXIMATION THEORY, 1995, 82 (03) :352-361
[3]   Elementary hypergeometric functions, Heun functions, and moments of MKZ operators [J].
Acu, Ana-Maria ;
Rasa, Ioan .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 115 (01)
[4]   Korovkin type error estimates for Meyer-Konig and Zeller operators [J].
Agratini, O .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2001, 4 (01) :119-126
[5]  
Aktuglu H, 2011, B MALAYS MATH SCI SO, V34, P465
[6]   THE 2ND MOMENT FOR THE MEYER-KONIG AND ZELLER OPERATORS [J].
ALKEMADE, JAH .
JOURNAL OF APPROXIMATION THEORY, 1984, 40 (03) :261-273
[7]   The generalization of Meyer-Konig and Zeller operators by generating functions [J].
Altin, A ;
Dogru, O ;
Tasdelen, F .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 312 (01) :181-194
[8]  
Altomare F., 1994, Korovkin-Type Approximation Theory and Its Applications, V17
[9]   GLOBAL APPROXIMATION THEOREM FOR MEYER-KONIG AND ZELLER OPERATORS [J].
BECKER, M ;
NESSEL, RJ .
MATHEMATISCHE ZEITSCHRIFT, 1978, 160 (03) :195-206
[10]   BERNSTEIN POWER SERIES [J].
CHENEY, EW ;
SHARMA, A .
CANADIAN JOURNAL OF MATHEMATICS, 1964, 16 (02) :241-&