A High-Density Energy-Efficient CNM Macro Using Hybrid RRAM and SRAM for Memory-Bound Applications

被引:0
作者
Wang, Jun [1 ,2 ]
Yan, Shengzhe [1 ,2 ]
Fu, Xiangqu [1 ,2 ]
Qian, Zhihang [1 ,2 ]
Li, Zhi [1 ,2 ]
Guo, Zeyu [1 ,2 ]
Dai, Zhuoyu [1 ,2 ]
Cong, Zhaori [1 ,2 ]
Dou, Chunmeng [1 ,2 ]
Zhang, Feng [1 ,2 ]
Yue, Jinshan [1 ,2 ]
Shang, Dashan [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Microelect, Beijing 100029, Peoples R China
[2] Univ Chinese Acad Sci, Sch Integrated Circuits, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Random access memory; Circuits; Logic gates; Energy efficiency; Adders; Transformers; Convolution; Computer architecture; Decoding; Registers; Compute-near-memory (CNM); energy efficiency; memory density; memory bound; resistive random access memory (RRAM);
D O I
10.1109/TVLSI.2025.3576889
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The big data era has facilitated various memory-centric algorithms, such as the Transformer decoder, neural network, stochastic computing (SC), and genetic sequence matching, which impose high demands on memory capacity, bandwidth, and access power consumption. The emerging nonvolatile memory devices and compute-near-memory (CNM) architecture offer a promising solution for memory-bound tasks. This work proposes a hybrid resistive random access memory (RRAM) and static random access memory (SRAM) CNM architecture. The main contributions include: 1) proposing an energy-efficient and high-density CNM architecture based on the hybrid integration of RRAM and SRAM arrays; 2) designing low-power CNM circuits using the logic gates and dynamic-logic adder with configurable datapath; and 3) proposing a broadcast mechanism with output-stationary workflow to reduce memory access. The proposed RRAM-SRAM CNM architecture and dataflow tailored for four distinct applications are evaluated at a 28-nm technology, achieving 4.62-TOPS/W energy efficiency and 1.20-Mb mm(2) memory density, which shows 11.35 x 25.81 x and 1.44x - 4.92x improvement compared to previous works, respectively.
引用
收藏
页码:2339 / 2343
页数:5
相关论文
共 14 条
[1]  
Chang M., 2023, IEEE INT SOLID STATE, P426, DOI DOI 10.1109/ISSCC42615.2023.10067544
[2]   Z-PIM: A Sparsity-Aware Processing-in-Memory Architecture With Fully Variable Weight Bit-Precision for Energy-Efficient Deep Neural Networks [J].
Kim, Ji-Hoon ;
Lee, Juhyoung ;
Lee, Jinsu ;
Heo, Jaehoon ;
Kim, Joo-Young .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2021, 56 (04) :1093-1104
[3]   Hybrid RRAM/SRAM in-Memory Computing for Robust DNN Acceleration [J].
Krishnan, Gokul ;
Wang, Zhenyu ;
Yeo, Injune ;
Yang, Li ;
Meng, Jian ;
Liehr, Maximilian ;
Joshi, Rajiv, V ;
Cady, Nathaniel C. ;
Fan, Deliang ;
Seo, Jae-Sun ;
Cao, Yu .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2022, 41 (11) :4241-4252
[4]  
Kwon Yongkee, 2023, 2023 IEEE Hot Chips 35 Symposium (HCS), P1, DOI 10.1109/HCS59251.2023.10254717
[5]  
Lee SC, 2022, INT J ENVIRON SCI TE, V19, P11023, DOI [10.1007/s13762-022-03911-8, 10.1109/IECON49645.2022.9968500]
[6]   DRISA: A DRAM-based Reconfigurable In-Situ Accelerator [J].
Li, Shuangchen ;
Niu, Dimin ;
Malladi, Krishna T. ;
Zheng, Hongzhong ;
Brennan, Bob ;
Xie, Yuan .
50TH ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE (MICRO), 2017, :288-301
[7]  
Li SC, 2018, 2018 51ST ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE (MICRO), P696, DOI [10.1109/MICRO.2018.00062, 10.1109/MICR0.2018.00062]
[8]   DIMCA: An Area-Efficient Digital In-Memory Computing Macro Featuring Approximate Arithmetic Hardware in 28 nm [J].
Lin, Chuan-Tung ;
Wang, Dewei ;
Zhang, Bo ;
Chen, Gregory K. ;
Knag, Phil C. ;
Krishnamurthy, Ram Kumar ;
Seok, Mingoo .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2024, 59 (03) :960-971
[9]   A 2.9-33.0 TOPS/W Reconfigurable 1-D/2-D Compute-Near-Memory Inference Accelerator in 10-nm FinFET CMOS [J].
Sumbul, H. Ekin ;
Chen, Gregory K. ;
Knag, Phil C. ;
Kumar, Raghavan ;
Anders, Mark A. ;
Kaul, Himanshu ;
Hsu, Steven K. ;
Agarwal, Amit ;
Kar, Monodeep ;
Kim, Seongjong ;
Krishnamurthy, Ram K. .
IEEE SOLID-STATE CIRCUITS LETTERS, 2020, 3 :118-121
[10]  
Tu Fengbin, 2023, 2023 IEEE International Solid- State Circuits Conference (ISSCC), P248, DOI 10.1109/ISSCC42615.2023.10067842