Automated Echocardiographic Detection of Heart Failure With Preserved Ejection Fraction Using Artificial Intelligence

被引:39
作者
Akerman, Ashley P. [1 ]
Porumb, Mihaela [1 ]
Scott, Christopher G. [2 ]
Beqiri, Arian [1 ]
Chartsias, Agisilaos [1 ]
Ryu, Alexander J. [3 ]
Hawkes, William [1 ]
Huntley, Geoffrey D. [4 ]
Arystan, Ayana Z. [4 ]
Kane, Garvan C. [4 ]
Pislaru, Sorin V. [4 ]
Lopez-Jimenez, Francisco [4 ]
Gomez, Alberto [1 ]
Sarwar, Rizwan [1 ,5 ,6 ]
O'Driscoll, Jamie [1 ,7 ]
Leeson, Paul [1 ]
Upton, Ross [1 ]
Woodward, Gary [1 ]
Pellikka, Patricia A. [1 ,4 ]
机构
[1] Ultrom Ltd, Oxford, England
[2] Mayo Clin, Dept Cardiovasc Med, Rochester, MN USA
[3] Mayo Clin, Div Hosp Internal Med, Rochester, MN USA
[4] Mayo Clin, Dept Quantitat Hlth Sci, Rochester, MN USA
[5] Univ Oxford, Cardiovasc Clin Res Facil, Oxford, England
[6] Univ Oxford, Radcliffe Dept Med, Med Sci Div, Expt Therapeut, Oxford, England
[7] St Georges Univ Hosp NHS Fdn Trust, Dept Cardiol, London, England
来源
JACC-ADVANCES | 2023年 / 2卷 / 06期
关键词
diastolic function; echocardiography; heart failure; imaging; machine learning; EUROPEAN ASSOCIATION; AMERICAN SOCIETY; RECOMMENDATIONS; UPDATE;
D O I
10.1016/j.jacadv.2023.100452
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND Detection of heart failure with preserved ejection fraction (HFpEF) involves integration of multiple imaging and clinical features which are often discordant or indeterminate. OBJECTIVES The authors applied artificial intelligence (AI) to analyze a single apical 4-chamber transthoracic echocardiogram video clip to detect HFpEF. METHODS A 3-dimensional convolutional neural network was developed and trained on apical 4-chamber video clips to classify patients with HFpEF (diagnosis of heart failure, ejection fraction >= 50%, and echocardiographic evidence of increased filling pressure; cases) vs without HFpEF (ejection fraction >= 50%, no diagnosis of heart failure, normal filling pressure; controls). Model outputs were classified as HFpEF, no HFpEF, or nondiagnostic (high uncertainty). Performance was assessed in an independent multisite data set and compared to previously validated clinical scores. RESULTS Training and validation included 2,971 cases and 3,785 controls (validation holdout, 16.8% patients), and demonstrated excellent discrimination (area under receiver-operating characteristic curve: 0.97 [95% CI: 0.96-0.97] and 0.95 [95% CI: 0.93-0.96] in training and validation, respectively). In independent testing (646 cases, 638 controls), 94 (7.3%) were nondiagnostic; sensitivity (87.8%; 95% CI: 84.5%-90.9%) and specificity (81.9%; 95% CI: 78.2%-85.6%) were maintained in clinically relevant subgroups, with high repeatability and reproducibility. Of 701 and 776 indeterminate outputs from the Heart Failure Association-Pretest Assessment, Echocardiographic and Natriuretic Peptide Score, Functional Testing (HFA-PEFF), and Final Etiology and Heavy, Hypertensive, Atrial Fibrillation, Pulmonary Hypertension, Elder, and Filling Pressure (H2FPEF) scores, the AI HFpEF model correctly reclassified 73.5% and 73.6%, respectively. During follow-up (median: 2.3 [IQR: 0.5-5.6] years), 444 (34.6%) patients died; mortality was higher in patients classified as HFpEF by AI (HR: 1.9 [95% CI: 1.5-2.4]). CONCLUSIONS An AI HFpEF model based on a single, routinely acquired echocardiographic video demonstrated excellent discrimination of patients with vs without HFpEF, more often than clinical scores, and identified patients with higher mortality. (c) 2023 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY license (http://creativecommons.org/ licenses/by/4.0/).
引用
收藏
页数:14
相关论文
共 26 条
[1]   Validation of the HFA-PEFF score for the diagnosis of heart failure with preserved ejection fraction [J].
Aizpurua, Arantxa Barandiaran ;
Sanders-van Wijk, Sandra ;
Brunner-La Rocca, Hans-Peter ;
Henkens, Michiel ;
Heymans, Stephane ;
Beussink-Nelson, Lauren ;
Shah, Sanjiv J. ;
van Empel, Vanessa P. M. .
EUROPEAN JOURNAL OF HEART FAILURE, 2020, 22 (03) :413-421
[2]   Feasibility, repeatability, and reproducibility of contemporary diastolic parameters and classification [J].
Bahrami, Hashmat S. Z. ;
Pedersen, Frederik H. G. ;
Myhr, Katrine A. ;
Mogelvang, Rasmus ;
Hassager, Christian .
INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2021, 37 (03) :931-944
[3]   Heart Failure With Preserved Ejection Fraction [J].
Borlaug, Barry A. ;
Sharma, Kavita ;
Shah, Sanjiv J. ;
Ho, Jennifer E. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2023, 81 (18) :1810-1834
[4]   Unsupervised Machine Learning for Assessment of Left Ventricular Diastolic Function and Risk Stratification [J].
Chao, Chieh-Ju ;
Kato, Nahoko ;
Scott, Christopher G. ;
Lopez-Jimenez, Francisco ;
Lin, Grace ;
Kane, Garvan C. ;
Pellikka, Patricia A. .
JOURNAL OF THE AMERICAN SOCIETY OF ECHOCARDIOGRAPHY, 2022, 35 (12) :1214-+
[5]   AI-Assisted Echocardiographic Prescreening of Heart Failure With Preserved Ejection Fraction on the Basis of Intrabeat Dynamics [J].
Chiou, Yu-An ;
Hung, Chung-Lieh ;
Lin, Shien-Fong .
JACC-CARDIOVASCULAR IMAGING, 2021, 14 (11) :2091-2104
[6]   2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines [J].
Heidenreich, Paul A. ;
Bozkurt, Biykem ;
Aguilar, David ;
Allen, Larry A. ;
Byun, Joni J. ;
Colvin, Monica M. ;
Deswal, Anita ;
Drazner, Mark H. ;
Dunlay, Shannon M. ;
Evers, Linda R. ;
Fang, James C. ;
Fedson, Savitri E. ;
Fonarow, Gregg C. ;
Hayek, Salim S. ;
Hernandez, Adrian F. ;
Khazanie, Prateeti ;
Kittleson, Michelle M. ;
Lee, Christopher S. ;
Link, Mark S. ;
Milano, Carmelo A. ;
Nnacheta, Lorraine C. ;
Sandhu, Alexander T. ;
Stevenson, Lynne Warner ;
Vardeny, Orly ;
Vest, Amanda R. ;
Yancy, Clyde W. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2022, 79 (17) :E253-E421
[7]   Deliberating the Diagnostic Dilemma of Heart Failure With Preserved Ejection Fraction [J].
Ho, Jennifer E. ;
Redfield, Margaret M. ;
Lewis, Gregory D. ;
Paulus, Walter J. ;
Lam, Carolyn S. P. .
CIRCULATION, 2020, 142 (18) :1770-1780
[8]   A Novel Continuous Left Ventricular Diastolic Function Score Using Machine Learning [J].
Jiang, River ;
Yeung, Darwin F. ;
Behnami, Delaram ;
Luong, Christina ;
Tsang, Michael Y. C. ;
Jue, John ;
Gin, Ken ;
Nair, Parvathy ;
Abolmaesumi, Purang ;
Tsang, Teresa S. M. .
JOURNAL OF THE AMERICAN SOCIETY OF ECHOCARDIOGRAPHY, 2022, 35 (12) :1247-1255
[9]   Patient Selection in Heart Failure With Preserved Ejection Fraction Clinical Trials [J].
Kelly, Jacob P. ;
Mentz, Robert J. ;
Mebazaa, Alexandre ;
Voors, Adriaan A. ;
Butler, Javed ;
Roessig, Lothar ;
Fiuzat, Mona ;
Zannad, Faiez ;
Pitt, Bertram ;
O'Connor, Christopher M. ;
Lam, Carolyn S. P. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2015, 65 (16) :1668-1682
[10]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90