The second main theorem with moving hypersurfaces in subgeneral position

被引:0
作者
Cai, Qili [1 ]
Yang, Chin-Jui [2 ]
机构
[1] Guangdong Polytech Normal Univ, Sch Math & Syst Sci, Guangzhou 510665, Peoples R China
[2] Univ Houston, Dept Math, Houston, TX 77204 USA
来源
AIMS MATHEMATICS | 2025年 / 10卷 / 04期
关键词
Nevanlinna theory; homolorphic curves; second main theorem; moving targets; distributive constants;
D O I
10.3934/math.2025404
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove a second main theorem for a holomorphic curve f into PN(C) with a family of slowly moving hypersurfaces D1, ..., Dq with respect to f in m-subgeneral position, proving an inequality with factor 32. The motivation comes from the recent result of Heier and Levin.
引用
收藏
页码:8818 / 8826
页数:9
相关论文
共 11 条
[1]   Meromorphic Mappings into Projective Varieties with Arbitrary Families of Moving Hypersurfaces [J].
Duc Quang Si .
JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (02)
[2]   A Schmidt-Nochka theorem for closed subschemes in subgeneral position [J].
Heier, Gordon ;
Levin, Aaron .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2025, 2025 (819) :205-229
[3]   A GENERALIZED SCHMIDT SUBSPACE THEOREM FOR CLOSED SUBSCHEMES [J].
Heier, Gordon ;
Levin, Aaron .
AMERICAN JOURNAL OF MATHEMATICS, 2021, 143 (01) :213-226
[4]  
Nevanlinna R., 1929, Le theoreme de Picard-Borel et la theorie des fonctions meromorphes, DOI [10.1007/BF01699341, DOI 10.1007/BF01699341]
[5]   SOMETIMES EFFECTIVE "THUE-SIEGEL-ROTH-SCHMIDT-NEVANLINNA BOUNDS, OR BETTER [J].
OSGOOD, CF .
JOURNAL OF NUMBER THEORY, 1985, 21 (03) :347-389
[6]  
Ru M., 1991, The Cartan conjecture for moving targets
[7]   Second Main Theorems for Holomorphic Curves in the Projective Space with Slowly Moving Hypersurfaces [J].
Shi, Lei ;
Yan, Qiming ;
Yu, Guangsheng .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024,
[8]  
STEINMETZ N, 1986, J REINE ANGEW MATH, V368, P134
[9]   On the Nochka-Chen-Ru-Wong proof of Cartan's conjecture [J].
Vojta, Paul .
JOURNAL OF NUMBER THEORY, 2007, 125 (01) :229-234
[10]   The second main theorem for small functions and related problems [J].
Yamanoi, K .
ACTA MATHEMATICA, 2004, 192 (02) :225-294