Generalized Clenshaw-Curtis quadrature method for systems of linear ODEs with constant coefficients

被引:0
作者
Lin, Fu-Rong [1 ]
Yang, Xi [1 ]
Zhang, Gui-Rong [1 ]
机构
[1] Shantou Univ, Dept Math, Shantou 515063, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
System of linear ODEs with constant coefficients; Matrix exponential function; Generalized Clenshaw-Curtis quadrature; Heat conduction equation; Riesz space diffusion equation; REACTION-DIFFUSION EQUATIONS; FREDHOLM INTEGRAL-EQUATIONS; FAST NUMERICAL-SOLUTION;
D O I
10.1016/j.apnum.2025.06.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider high precision numerical methods for the initial problem of systems of linear ordinary differential equations (ODEs) with constant coefficients. It is well-known that the analytic solution of such a system of linear ODEs involves a matrix exponential function and an integral whose integrand is the product of a matrix exponential and a vector-valued function. We mainly consider numerical quadrature methods for the integral term in the analytic solution and propose a generalized Clenshaw-Curtis (GCC) quadrature method. The proposed method is then applied to the initial-boundary value problem for a heat conduction equation and a Riesz space fractional diffusion equation, respectively. Numerical results are presented to demonstrate the effectiveness of the proposed method.
引用
收藏
页码:112 / 125
页数:14
相关论文
共 30 条
[1]   COMPUTING THE ACTION OF THE MATRIX EXPONENTIAL, WITH AN APPLICATION TO EXPONENTIAL INTEGRATORS [J].
Al-Mohy, Awad H. ;
Higham, Nicholas J. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (02) :488-511
[2]   Fast high-order method for multi-dimensional space-fractional reaction-diffusion equations with general boundary conditions [J].
Almushaira, M. ;
Bhatt, H. ;
Al-rassas, A. M. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 182 :235-258
[3]   Euler polynomials for the matrix exponential approximation [J].
Alonso, Jose M. ;
Ibanez, J. ;
Defez, E. ;
Alonso-Jorda, P. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 425
[4]   Hybrid Gauss-trapezoidal quadrature rules [J].
Alpert, BK .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (05) :1551-1584
[5]  
Bau D., 1997, Numerical Linear Algebra, DOI 10.1137/1.9780898719574
[6]   Numerical solution of nonlinear two-dimensional Fredholm integral equations of the second kind using Gauss product quadrature rules [J].
Bazm, S. ;
Babolian, E. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (03) :1215-1223
[7]   An Extended-Rational Arnoldi Method for Large Matrix Exponential Evaluations [J].
Bentbib, A. H. ;
El Ghomari, M. ;
Jbilou, K. .
JOURNAL OF SCIENTIFIC COMPUTING, 2022, 91 (02)
[8]  
Boland W. R., 1971, BIT (Nordisk Tidskrift for Informationsbehandling), V11, P139, DOI 10.1007/BF01934362
[9]   Numerical calculation of regular and singular integrals in boundary integral equations using Clenshaw-Curtis quadrature rules [J].
Chen, Linchong ;
Li, Xiaolin .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2023, 155 :25-37
[10]   On Bernoulli matrix polynomials and matrix exponential approximation [J].
Defez, E. ;
Ibanez, J. ;
Alonso-Jorda, P. ;
Alonso, Jose M. ;
Peinado, J. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 404