Hierarchical Reinforcement Learning for Point of Interest Recommendation

被引:0
作者
Xiao, Yanan [1 ,6 ]
Jiang, Lu [2 ]
Liu, Kunpeng [3 ]
Xu, Yuanbo [4 ,7 ]
Wang, Pengyang [5 ,8 ]
Yin, Minghao [1 ,6 ]
机构
[1] Northeast Normal Univ, Sch Comp Sci & Informat Technol, Changchun, Peoples R China
[2] Dalian Maritime Univ, Dept Informat Sci & Technol, Dalian, Peoples R China
[3] Portland State Univ, Dept Comp Sci, Portland, OR USA
[4] Jilin Univ, Coll Comp Sci & Technol, Changchun, Peoples R China
[5] Univ Macau, Dept Comp & Informat Sci, Macau, Peoples R China
[6] Northeast Normal Univ, Key Lab Appl Stat, MOE, Changchun, Peoples R China
[7] Jilin Univ, Mobile Intelligent Comp MIC Lab, Changchun, Peoples R China
[8] Univ Macau, State Key Lab Internet Things Smart City, Macau, Peoples R China
来源
PROCEEDINGS OF THE THIRTY-THIRD INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2024 | 2024年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the increasing popularity of location-based services, accurately recommending points of interest (POIs) has become a critical task. Although existing technologies are proficient in processing sequential data, they fall short when it comes to accommodating the diversity and dynamism in users' POI selections, particularly in extracting key signals from complex historical behaviors. To address this challenge, we introduced the Hierarchical Reinforcement Learning Preprocessing Framework (HRL-PRP), a framework that can be integrated into existing recommendation models to effectively optimize user profiles. The HRL-PRP framework employs a two-tiered decision-making process, where the high-level process determines the necessity of modifying profiles, and the lowlevel process focuses on selecting POIs within the profiles. Through evaluations of multiple realworld datasets, we have demonstrated that HRLPRP surpasses existing state-of-the-art methods in various recommendation performance metrics.
引用
收藏
页码:2460 / 2468
页数:9
相关论文
共 45 条
[1]   Joint Promotion Partner Recommendation Systems Using Data from Location-Based Social Networks [J].
Chen, Yi-Chung ;
Huang, Hsi-Ho ;
Chiu, Sheng-Min ;
Lee, Chiang .
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (02)
[2]  
Doan Khoa D, PAKDD, P346
[3]   DENOISING-ORIENTED DEEP HIERARCHICAL REINFORCEMENT LEARNING FOR NEXT-BASKET RECOMMENDATION [J].
Du, Qihan ;
Yu, Li ;
Li, Huiyuan ;
Leng, Youfang ;
Ou, Ningrui .
2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, :4093-4097
[4]   DeepMove: Predicting Human Mobility with Attentional Recurrent Networks [J].
Feng, Jie ;
Li, Yong ;
Zhang, Chao ;
Sun, Funing ;
Meng, Fanchao ;
Guo, Ang ;
Jin, Depeng .
WEB CONFERENCE 2018: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW2018), 2018, :1459-1468
[5]   HME: A Hyperbolic Metric Embedding Approach for Next-POI Recommendation [J].
Feng, Shanshan ;
Tran, Lucas Vinh ;
Cong, Gao ;
Chen, Lisi ;
Li, Jing ;
Li, Fan .
PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, :1429-1438
[6]   NAIS: Neural Attentive Item Similarity Model for Recommendation [J].
He, Xiangnan ;
He, Zhankui ;
Song, Jingkuan ;
Liu, Zhenguang ;
Jiang, Yu-Gang ;
Chua, Tat-Seng .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2018, 30 (12) :2354-2366
[7]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.8.1735, 10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
[8]   Boosting Urban Prediction via Addressing Spatial -Temporal Distribution Shift [J].
Hu, Xuanming ;
Fan, Wei ;
Yi, Kun ;
Wang, Pengfei ;
Xu, Yuanbo ;
Fu, Yanjie ;
Wang, Pengyang .
23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, ICDM 2023, 2023, :160-169
[9]   An Attention-Based Spatiotemporal LSTM Network for Next POI Recommendation [J].
Huang, Liwei ;
Ma, Yutao ;
Wang, Shibo ;
Liu, Yanbo .
IEEE TRANSACTIONS ON SERVICES COMPUTING, 2021, 14 (06) :1585-1597
[10]   Deep Representation Learning for Location-Based Recommendation [J].
Huang, Zhenhua ;
Lin, Xiaolong ;
Liu, Hai ;
Zhang, Bo ;
Chen, Yunwen ;
Tang, Yong .
IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2020, 7 (03) :648-658