A Non-Invasive, Machine Learning Assisted Skin-Hydration Microwave Sensor

被引:1
作者
Trovarello, S. [1 ]
Afif, O. [1 ]
Di Renzo, A. Di Florio [1 ]
Masotti, D. [1 ]
Tartagni, M. [1 ]
Costanzo, A. [1 ]
机构
[1] Univ Bologna, DEI Guglielmo Marconi, Bologna, Italy
来源
2024 54TH EUROPEAN MICROWAVE CONFERENCE, EUMC 2024 | 2024年
关键词
CSRR; microwave sensor; skin hydration; multivariate analysis;
D O I
10.23919/EuMC61614.2024.10732419
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a non-invasive and electrodeless skin-hydration sensor based on a microwave resonator, assisted by a machine learning (ML) classification algorithm. A miniaturized complementary-split ring resonator (CSRR) operating in the 2 divided by 3 GHz band is designed to sense and detect hydration changes in the human skin utilizing the near-field interaction with the resonator. The resonator is first simulated using electromagnetic (EM) simulations and loaded with skin in different hydration conditions. Then, the resonator is fabricated and tested in three different body regions: thenar eminence, proximal wrist ceases, and cheek. Spectra are collected during an extensive experimental campaign in which repeated measurements are taken over three days on the three regions of the body. The Soft Independent Modelling of Class Analogy (SIMCA) method is then used to interpret and classify the spectral data acquired from the resonator into two distinct hydration classes. The results of this study highlight the effectiveness of SIMCA as a multivariate analysis technique for processing and categorizing spectral data obtained from CSRR for monitoring body hydration. This approach provides a cost-effective solution and demonstrates high efficiency in accurately distinguishing between hydration states, which holds great promise for practical applications in hydration monitoring.
引用
收藏
页码:932 / 935
页数:4
相关论文
共 14 条
[1]   A Flexible Tuned Radio-Frequency Planar Resonant Loop for Noninvasive Hydration Sensing [J].
Bing, Sen ;
Chawang, Khengdauliu ;
Chiao, J. -C. .
IEEE JOURNAL OF MICROWAVES, 2023, 3 (01) :181-192
[2]   Portable Microwave Reflectometry System for Skin Sensing [J].
Cataldo, Andrea ;
De Benedetto, Egidio ;
Schiavoni, Raissa ;
Monti, Giuseppina ;
Tedesco, Annarita ;
Masciullo, Antonio ;
Piuzzi, Emanuele ;
Tarricone, Luciano .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
[3]   A Stand-Alone Moisture Content Sensor Based on a Loaded Self-Oscillating Antenna [J].
Di Renzo, A. Di Florio ;
Trovarello, S. ;
Afif ;
Franceschelli, L. ;
Tartagni, M. ;
Masotti, D. ;
Costanzo, A. .
2024 IEEE/MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM, IMS 2024, 2024, :284-287
[4]   Non-intrusive microwave technique for direct detection of concrete compressive strength monitoring by multivariate modeling [J].
Franceschelli, Leonardo ;
Iaccheri, Eleonora ;
Franzoni, Elisa ;
Berardinelli, Annachiara ;
Ragni, Luigi ;
Mazzotti, Claudio ;
Tartagni, Marco .
MEASUREMENT, 2023, 206
[5]   Machine Learning Assisted Novel Microwave Sensor Design for Dielectric Parameter Characterization of Water-Ethanol Mixture [J].
Gocen, Cem ;
Palandoken, Merih .
IEEE SENSORS JOURNAL, 2022, 22 (03) :2119-2127
[6]  
Hasgall P.A., 2022, IT'IS Database for thermal and electromagnetic parameters of biological tissues, DOI [DOI 10.13099/VIP21000-04-1, 10. 13099/VIP21000-04-1]
[7]   Comparative Analysis of Machine Learning Techniques for Temperature Compensation in Microwave Sensors [J].
Kazemi, Nazli ;
Abdolrazzaghi, Mohammad ;
Musilek, Petr .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2021, 69 (09) :4223-4236
[8]   A Non-Invasive Method for Hydration Status Measurement With a Microwave Sensor Using Skin Phantoms [J].
Kilpijarvi, Joni ;
Tolvanen, Jarrkko ;
Juuti, Jari ;
Halonen, Niina ;
Hannu, Jari .
IEEE SENSORS JOURNAL, 2020, 20 (02) :1095-1104
[9]   Portable Radar-Driven Microwave Sensor for Intermittent Glucose Levels Monitoring [J].
Omer, Ala Eldin ;
Shaker, George ;
Safavi-Naeini, Safieddin .
IEEE SENSORS LETTERS, 2020, 4 (05)
[10]   A Fused Learning and Enhancing Method for Accurate and Noninvasive Hydration Status Monitoring With UWB Microwave Based on Phantom [J].
Peng, Lu ;
Song, Hang ;
Xiao, Xia ;
Liu, Guancong ;
Lu, Min ;
Liu, Yu ;
Wei, Bo ;
Kikkawa, Takamaro .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2023, 71 (09) :4027-4036