An Ultrasound-based Machine Learning Model for Predicting Tumor-Infiltrating Lymphocytes in Breast Cancer

被引:0
作者
Liu, Boya [1 ,2 ]
Gu, Xiangrong [3 ]
Xie, Danling [1 ,4 ]
Zhao, Bing [1 ]
Han, Dong [1 ]
Zhang, Yuli [1 ]
Li, Tao [1 ]
Fang, Jingqin [1 ]
机构
[1] Army Med Univ, Daping Hosp, Dept Ultrasound, Chongqing 400042, Peoples R China
[2] First Peoples Hosp Jining, Dept Ultrasound Diag, Jining, Shandong, Peoples R China
[3] Army Med Univ, Daping Hosp, Dept Radiol, Chongqing, Peoples R China
[4] Army Med Univ, Affiliated Hosp 2, Dept Ultrasound Diag, Chongqing, Peoples R China
关键词
breast cancer; tumor-infiltrating lymphocytes (TILs); radiomics; ultrasound; RADIOMICS; THERAPY;
D O I
10.1177/15330338251334453
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Introduction. Tumor-infiltrating lymphocytes (TILs) are key indicators of immune response and prognosis in breast cancer (BC). Accurate prediction of TIL levels is essential for guiding personalized treatment strategies. This study aimed to develop and evaluate machine learning models using ultrasound-derived radiomics and clinical features to predict TIL levels in BC. Methods. This retrospective study included 256 BC patients between January 2019 and August 2023, who were randomly divided into training (n = 179) and test (n = 77) cohorts. Radiomics features were extracted from the intratumor and peritumor regions in ultrasound images. Feature selection was performed using the "Boruta" package in R to iteratively remove non-significant features. Extra Trees Classifier was used to construct radiomics and clinical models. A combined radiomics-clinical (R-C) model was also developed. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, and decision curve analysis (DCA) to assess clinical utility. A nomogram was created based on the best-performing model. Results. A total of 1712 radiomics features were extracted from the intratumor and peritumor regions. The Boruta method selected five key features (four from the peritumor and one from the intratumor) for model construction. Clinical features, including immunohistochemistry, tumor size, shape, and echo characteristics, showed significant differences between high (>= 10%) and low (<10%) TIL groups. Both the R-C and radiomics models outperformed the clinical model in the test cohort (area under the curve values of 0.869/0.838 vs 0.627, P < .05). Calibration curves and Brier scores demonstrated superior accuracy and calibration for the R-C and radiomics models. DCA revealed the highest net benefit of the R-C model at intermediate threshold probabilities. Conclusion. Ultrasound-derived radiomics effectively predicts TIL levels in BC, providing valuable insights for personalized treatment and surveillance strategies.
引用
收藏
页数:12
相关论文
共 35 条
[1]   Evaluating Tumor-Infiltrating Lymphocytes in Breast Cancer Using Preoperative MRI-Based Radiomics [J].
Bian, Tiantian ;
Wu, Zengjie ;
Lin, Qing ;
Mao, Yan ;
Wang, Haibo ;
Chen, Jingjing ;
Chen, Qianqian ;
Fu, Guangming ;
Cui, Chunxiao ;
Su, Xiaohui .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2022, 55 (03) :772-784
[2]   Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI [J].
Braman, Nathaniel M. ;
Etesami, Maryam ;
Prasanna, Prateek ;
Dubchuk, Christina ;
Gilmore, Hannah ;
Tiwari, Pallavi ;
Pletcha, Donna ;
Madabhushi, Anant .
BREAST CANCER RESEARCH, 2017, 19
[3]   BI-RADS Ultrasound Lexicon Descriptors and Stromal Tumor-Infiltrating Lymphocytes in Triple-Negative Breast Cancer [J].
Candelaria, Rosalind P. ;
Spak, David A. ;
Rauch, Gaiane M. ;
Huo, Lei ;
Bassett, Roland L. ;
Santiago, Lumarie ;
Scoggins, Marion E. ;
Guirguis, Mary S. ;
Patel, Miral M. ;
Whitman, Gary J. ;
Moulder, Stacy L. ;
Thompson, Alastair M. ;
Ravenberg, Elizabeth E. ;
White, Jason B. ;
Abuhadra, Nour K. ;
Valero, Vicente ;
Litton, Jennifer ;
Adrada, Beatriz E. ;
Yang, Wei T. .
ACADEMIC RADIOLOGY, 2022, 29 :S35-S41
[4]   Usefulness of imaging findings in predicting tumor-infiltrating lymphocytes in patients with breast cancer [J].
Celebi, Filiz ;
Agacayak, Filiz ;
Ozturk, Alper ;
Ilgun, Serkan ;
Ucuncu, Muhammed ;
Iyigun, Zeynep Erdogan ;
Ordu, Cetin ;
Pilanci, Kezban Nur ;
Alco, Gul ;
Gultekin, Serap ;
Cindil, Emetullah ;
Soybir, Gursel ;
Aktepe, Fatma ;
Ozmen, Vahit .
EUROPEAN RADIOLOGY, 2020, 30 (04) :2049-2057
[5]   Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy [J].
Denkert, Carsten ;
von Minckwitz, Gunter ;
Darb-Esfahani, Silvia ;
Lederer, Bianca ;
Heppner, Barbara I. ;
Weber, Karsten E. ;
Budczies, Jan ;
Huober, Jens ;
Klauschen, Frederick ;
Furlanetto, Jenny ;
Schmitt, Wolfgang D. ;
Blohmer, Jens-Uwe ;
Karn, Thomas ;
Pfitzner, Berit M. ;
Kuemmel, Sherko ;
Engels, Knut ;
Schneeweiss, Andreas ;
Hartmann, Arndt ;
Noske, Aurelia ;
Fasching, Peter A. ;
Jackisch, Christian ;
van Mackelenbergh, Marion ;
Sinn, Peter ;
Schem, Christian ;
Hanusch, Claus ;
Untch, Michael ;
Loibl, Sibylle .
LANCET ONCOLOGY, 2018, 19 (01) :40-50
[6]   Integration of tumour infiltrating lymphocytes, programmed cell-death ligand-1, CD8 and FOXP3 in prognostic models for triple-negative breast cancer: Analysis of 244 stage I-III patients treated with standard therapy [J].
Dieci, Maria Vittoria ;
Tsvetkova, Vassilena ;
Griguolo, Gaia ;
Miglietta, Federica ;
Tasca, Giulia ;
Giorgi, Carlo Alberto ;
Cumerlato, Enrico ;
Massa, Davide ;
Mele, Marcello Lo ;
Orvieto, Enrico ;
Guarneri, Valentina ;
Conte, Pierfranco .
EUROPEAN JOURNAL OF CANCER, 2020, 136 :7-15
[7]   Update on tumor-infiltrating lymphocytes (TILs) in breast cancer, including recommendations to assess TILs in residual disease after neoadjuvant therapy and in carcinoma in situ: A report of the International Immuno-Oncology Biomarker Working Group on Breast Cancer [J].
Dieci, Maria Vittoria ;
Radosevic-Robin, Nina ;
Fineberg, Susan ;
van den Eynden, Gert ;
Ternes, Nils ;
Penault-Llorca, Frederique ;
Pruneri, Giancarlo ;
D'Alfonso, Timothy M. ;
Demaria, Sandra ;
Castaneda, Carlos ;
Sanchez, Joselyn ;
Badve, Sunil ;
Michiels, Stefan ;
Bossuyt, Veerle ;
Rojo, Federico ;
Singh, Baljit ;
Nielsen, Torsten ;
Viale, Giuseppe ;
Kim, Seong-Rim ;
Hewitt, Stephen ;
Wienert, Stephan ;
Loibl, Sybille ;
Rimm, David ;
Symmans, Fraser ;
Denkert, Carsten ;
Adams, Sylvia ;
Loi, Sherene ;
Salgado, Roberto .
SEMINARS IN CANCER BIOLOGY, 2018, 52 :16-25
[8]   Novel tumor-infiltrating lymphocytes ultrasonography score based on ultrasonic tissue findings predicts tumor-infiltrating lymphocytes in breast cancer [J].
Fukui, Kayo ;
Masumoto, Norio ;
Shiroma, Noriyuki ;
Kanou, Akiko ;
Sasada, Shinsuke ;
Emi, Akiko ;
Kadoya, Takayuki ;
Yokozaki, Michiya ;
Arihiro, Koji ;
Okada, Morihito .
BREAST CANCER, 2019, 26 (05) :573-580
[9]   Strategies for subtypes-dealing with the diversity of breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011 [J].
Goldhirsch, A. ;
Wood, W. C. ;
Coates, A. S. ;
Gelber, R. D. ;
Thuerlimann, B. ;
Senn, H. -J. .
ANNALS OF ONCOLOGY, 2011, 22 (08) :1736-1747
[10]   Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients [J].
Herbst, Roy S. ;
Soria, Jean-Charles ;
Kowanetz, Marcin ;
Fine, Gregg D. ;
Hamid, Omid ;
Gordon, Michael S. ;
Sosman, Jeffery A. ;
McDermott, David F. ;
Powderly, John D. ;
Gettinger, Scott N. ;
Kohrt, Holbrook E. K. ;
Horn, Leora ;
Lawrence, Donald P. ;
Rost, Sandra ;
Leabman, Maya ;
Xiao, Yuanyuan ;
Mokatrin, Ahmad ;
Koeppen, Hartmut ;
Hegde, Priti S. ;
Mellman, Ira ;
Chen, Daniel S. ;
Hodi, F. Stephen .
NATURE, 2014, 515 (7528) :563-+