Multi-Source Remote Sensing and GIS for Forest Carbon Monitoring Toward Carbon Neutrality

被引:0
作者
Liang, Xiongwei [1 ,2 ]
Yu, Shaopeng [1 ]
Meng, Bo [1 ,2 ]
Wang, Xiaodi [1 ]
Yang, Chunxue [1 ,2 ]
Shi, Chuanqi [1 ]
Ding, Junnan [1 ]
机构
[1] Harbin Univ, Cold Reg Wetland Ecol & Environm Res Key Lab Heilo, Harbin 150086, Peoples R China
[2] Harbin Inst Technol, State Key Lab Urban Water Resource & Environm, Harbin 150086, Peoples R China
关键词
forest carbon monitoring; remote sensing; data fusion; carbon neutrality; MACHINE-LEARNING-METHODS; PRIMARY PRODUCTIVITY; BIOMASS; CHALLENGES; RETRIEVAL; PROGRESS; FUSION; MODEL;
D O I
10.3390/f16060971
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Forests play a pivotal role in the global carbon cycle, making accurate estimation of forest carbon stocks essential for climate change mitigation efforts. However, the diverse methods available for assessing forest carbon yield varying results and have different limitations. This study provides a comprehensive review of current methods for estimating forest carbon stocks, including field-based measurements, remote sensing techniques, and integrated approaches. We systematically collected and analyzed recent studies (2010-2025) on forest carbon estimation across various ecosystems. Our review indicates that field-based methods, such as forest inventories and allometric equations, offer high accuracy at local scales but are labor-intensive. Remote sensing methods (e.g., LiDAR and satellite imagery) enable large-scale carbon assessment with moderate accuracy and efficiency. Integrated approaches that combine ground measurements with remote sensing data can improve accuracy while expanding spatial coverage. We discuss the strengths and weaknesses of each method category in terms of accuracy, cost, and scalability. Based on the synthesis of findings, we recommend a balanced approach that leverages both ground and remote sensing techniques for reliable forest carbon monitoring. This review also identifies knowledge gaps and suggests directions for future research to enhance the precision and applicability of forest carbon estimation methods.
引用
收藏
页数:32
相关论文
共 99 条
[21]  
Dubayah R., 2022, GEDI L4A Footprint Level Aboveground Biomass Density, DOI 10.3334
[22]   Carbon, climate, and natural disturbance: a review of mechanisms, challenges, and tools for understanding forest carbon stability in an uncertain future [J].
Dye, Alex W. ;
Houtman, Rachel M. ;
Gao, Peng ;
Anderegg, William R. L. ;
Fettig, Christopher J. ;
Hicke, Jeffrey A. ;
Kim, John B. ;
Still, Christopher J. ;
Young, Kevin ;
Riley, Karin L. .
CARBON BALANCE AND MANAGEMENT, 2024, 19 (01)
[23]  
ElMasry G., 2010, Hyperspectral Imaging for Food Quality Analysis and Control, P3, DOI 10.1016/B978-0-12-374753-2.10001-2
[24]   Changes in forest biomass carbon storage in China between 1949 and 1998 [J].
Fang, JY ;
Chen, AP ;
Peng, CH ;
Zhao, SQ ;
Ci, L .
SCIENCE, 2001, 292 (5525) :2320-2322
[25]  
fao.org, About us
[26]   Assimilation of Global Satellite Leaf Area Estimates Reduces Modeled Global Carbon Uptake and Energy Loss by Terrestrial Ecosystems [J].
Fox, Andrew M. ;
Huo, Xueli ;
Hoar, Timothy J. ;
Dashti, Hamid ;
Smith, William K. ;
MacBean, Natasha ;
Anderson, Jeffrey L. ;
Roby, Matthew ;
Moore, David J. P. .
JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2022, 127 (08)
[27]   Global Carbon Budget 2024 [J].
Friedlingstein, Pierre ;
O'Sullivan, Michael ;
Jones, Matthew W. ;
Andrew, Robbie M. ;
Hauck, Judith ;
Landschutzer, Peter ;
Le Quere, Corinne ;
Li, Hongmei ;
Luijkx, Ingrid T. ;
Olsen, Are ;
Peters, Glen P. ;
Peters, Wouter ;
Pongratz, Julia ;
Schwingshackl, Clemens ;
Sitch, Stephen ;
Canadell, Josep G. ;
Ciais, Philippe ;
Jackson, Robert B. ;
Alin, Simone R. ;
Arneth, Almut ;
Arora, Vivek ;
Bates, Nicholas R. ;
Becker, Meike ;
Bellouin, Nicolas ;
Berghoff, Carla F. ;
Bittig, Henry C. ;
Bopp, Laurent ;
Cadule, Patricia ;
Campbell, Katie ;
Chamberlain, Matthew A. ;
Chandra, Naveen ;
Chevallier, Frederic ;
Chini, Louise P. ;
Colligan, Thomas ;
Decayeux, Jeanne ;
Djeutchouang, Laique M. ;
Dou, Xinyu ;
Rojas, Carolina Duran ;
Enyo, Kazutaka ;
Evans, Wiley ;
Fay, Amanda R. ;
Feely, Richard A. ;
Ford, Daniel J. ;
Foster, Adrianna ;
Gasser, Thomas ;
Gehlen, Marion ;
Gkritzalis, Thanos ;
Grassi, Giacomo ;
Gregor, Luke ;
Gruber, Nicolas .
EARTH SYSTEM SCIENCE DATA, 2025, 17 (03) :965-1039
[28]   Assessment of remote-sensed vegetation indices for estimating forest chlorophyll concentration [J].
Gao, Si ;
Yan, Kai ;
Liu, Jinxiu ;
Pu, Jiabin ;
Zou, Dongxiao ;
Qi, Jianbo ;
Mu, Xihan ;
Yan, Guangjian .
ECOLOGICAL INDICATORS, 2024, 162
[29]   Advances in remote sensing technology and implications for measuring and monitoring forest carbon stocks and change [J].
Goetz, Scott ;
Dubayah, Ralph .
CARBON MANAGEMENT, 2011, 2 (03) :231-244
[30]   Assessing the impact of land use and changes in land cover related to carbon storage by linking trajectory analysis and InVEST models in the Nandu River Basin on Hainan Island in China [J].
Gong, Wenfeng ;
Duan, Xuanyu ;
Mao, Mingjiang ;
Hu, Jihan ;
Sun, Yuxin ;
Wu, Genghong ;
Zhang, Yangyang ;
Xie, Yidan ;
Qiu, Xincai ;
Rao, Xiaodong ;
Liu, Tiedong ;
Liu, Tao .
FRONTIERS IN ENVIRONMENTAL SCIENCE, 2022, 10