Multi-Source Remote Sensing and GIS for Forest Carbon Monitoring Toward Carbon Neutrality

被引:0
作者
Liang, Xiongwei [1 ,2 ]
Yu, Shaopeng [1 ]
Meng, Bo [1 ,2 ]
Wang, Xiaodi [1 ]
Yang, Chunxue [1 ,2 ]
Shi, Chuanqi [1 ]
Ding, Junnan [1 ]
机构
[1] Harbin Univ, Cold Reg Wetland Ecol & Environm Res Key Lab Heilongjiang Prov, Harbin 150086, Peoples R China
[2] Harbin Inst Technol, State Key Lab Urban Water Resource & Environm, Harbin 150086, Peoples R China
来源
FORESTS | 2025年 / 16卷 / 06期
关键词
forest carbon monitoring; remote sensing; data fusion; carbon neutrality; MACHINE-LEARNING-METHODS; PRIMARY PRODUCTIVITY; BIOMASS; CHALLENGES; RETRIEVAL; PROGRESS; FUSION; MODEL;
D O I
10.3390/f16060971
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Forests play a pivotal role in the global carbon cycle, making accurate estimation of forest carbon stocks essential for climate change mitigation efforts. However, the diverse methods available for assessing forest carbon yield varying results and have different limitations. This study provides a comprehensive review of current methods for estimating forest carbon stocks, including field-based measurements, remote sensing techniques, and integrated approaches. We systematically collected and analyzed recent studies (2010-2025) on forest carbon estimation across various ecosystems. Our review indicates that field-based methods, such as forest inventories and allometric equations, offer high accuracy at local scales but are labor-intensive. Remote sensing methods (e.g., LiDAR and satellite imagery) enable large-scale carbon assessment with moderate accuracy and efficiency. Integrated approaches that combine ground measurements with remote sensing data can improve accuracy while expanding spatial coverage. We discuss the strengths and weaknesses of each method category in terms of accuracy, cost, and scalability. Based on the synthesis of findings, we recommend a balanced approach that leverages both ground and remote sensing techniques for reliable forest carbon monitoring. This review also identifies knowledge gaps and suggests directions for future research to enhance the precision and applicability of forest carbon estimation methods.
引用
收藏
页数:32
相关论文
共 99 条
[1]   Forest Aboveground Biomass and Forest Height Estimation Over a Sub-tropical Forest Using Machine Learning Algorithm and Synthetic Aperture Radar Data [J].
Ali, Noman ;
Khati, Unmesh .
JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2024, 52 (04) :771-786
[2]   Climate-driven risks to the climate mitigation potential of forests [J].
Anderegg, William R. L. ;
Trugman, Anna T. ;
Badgley, Grayson ;
Anderson, Christa M. ;
Bartuska, Ann ;
Ciais, Philippe ;
Cullenward, Danny ;
Field, Christopher B. ;
Freeman, Jeremy ;
Goetz, Scott J. ;
Hicke, Jeffrey A. ;
Huntzinger, Deborah ;
Jackson, Robert B. ;
Nickerson, John ;
Pacala, Stephen ;
Randerson, James T. .
SCIENCE, 2020, 368 (6497) :1327-+
[3]  
Anish K. C., 2022, Forestry: Journal of Institute of Forestry, Nepal, V19, P40, DOI 10.3126/forestry.v19i01.55703
[4]   An integrated pan-tropical biomass map using multiple reference datasets [J].
Avitabile, Valerio ;
Herold, Martin ;
Heuvelink, Gerard B. M. ;
Lewis, Simon L. ;
Phillips, Oliver L. ;
Asner, Gregory P. ;
Armston, John ;
Ashton, Peter S. ;
Banin, Lindsay ;
Bayol, Nicolas ;
Berry, Nicholas J. ;
Boeckx, Pascal ;
de Jong, Bernardus H. J. ;
DeVries, Ben ;
Girardin, Cecile A. J. ;
Kearsley, Elizabeth ;
Lindsell, Jeremy A. ;
Lopez-Gonzalez, Gabriela ;
Lucas, Richard ;
Malhi, Yadvinder ;
Morel, Alexandra ;
Mitchard, Edward T. A. ;
Nagy, Laszlo ;
Qie, Lan ;
Quinones, Marcela J. ;
Ryan, Casey M. ;
Ferry, Slik J. W. ;
Sunderland, Terry ;
Laurin, Gaia Vaglio ;
Gatti, Roberto Cazzolla ;
Valentini, Riccardo ;
Verbeeck, Hans ;
Wijaya, Arief ;
Willcock, Simon .
GLOBAL CHANGE BIOLOGY, 2016, 22 (04) :1406-1420
[5]   Integrating remote sensing and 3-PG model to simulate the biomass and carbon stock of Larix olgensis plantation [J].
Bai, Yu ;
Pang, Yong ;
Kong, Dan .
FOREST ECOSYSTEMS, 2024, 11
[6]  
Bashmakov I.A., 2022, Annual Climate Change Statement 2022: The First Annual Climate Change Statement to Parliament as Required by the Climate Change Act 2022, DOI DOI 10.1201/9781003264705-7
[7]  
BEAUDOIN A, 1994, INT J REMOTE SENS, V15, P2777, DOI 10.1080/01431169408954284
[8]   Hyperspectral Remote Sensing Data Analysis and Future Challenges [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Camps-Valls, Gustavo ;
Scheunders, Paul ;
Nasrabadi, Nasser M. ;
Chanussot, Jocelyn .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2013, 1 (02) :6-36
[9]   The decadal state of the terrestrial carbon cycle: Global retrievals of terrestrial carbon allocation, pools, and residence times [J].
Bloom, A. Anthony ;
Exbrayat, Jean-Francois ;
van der Velde, Ivar R. ;
Feng, Liang ;
Williams, Mathew .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (05) :1285-1290
[10]   LIDAR-Based Forest Biomass Remote Sensing: A Review of Metrics, Methods, and Assessment Criteria for the Selection of Allometric Equations [J].
Borsah, Abraham Aidoo ;
Nazeer, Majid ;
Wong, Man Sing .
FORESTS, 2023, 14 (10)