Three dimensional homogeneous hyperbolic Yamabe solitons

被引:0
作者
Sarkar, Avijit [1 ]
Sarkar, Babita [1 ]
机构
[1] Univ Kalyani, Dept Math, Kalyani 741235, West Bengal, India
关键词
Hyperbolic yamabe soliton; Riemannian metric; Lorentzian metric; RICCI SOLITONS; FLOW; METRICS;
D O I
10.2298/FIL2508639S
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present article deals with homogeneous hyperbolic Yamabe solitons of dimension three. We delve into unimodular as well as non-unimodular hyperbolic Yamabe solitons on Lorentzian manifolds. Hyperbolic Yamabe solitons on special three dimensional Lie groups have also been considered.
引用
收藏
页码:2639 / 2653
页数:15
相关论文
共 28 条
[1]  
Azami S., 2017, Electron. J. Differ. Equn., V165, P1
[2]   Hyperbolic Ricci soliton on warped product manifolds [J].
Azami, Shahroud ;
Fasihi-Ramandi, Ghodratallah .
FILOMAT, 2023, 37 (20) :6843-6853
[3]  
Blaga A. M., 2024, Period. Math. Hungar.
[4]   On trivial gradient hyperbolic Ricci and gradient hyperbolic Yamabe solitons [J].
Blaga, Adara M. .
JOURNAL OF GEOMETRY, 2024, 115 (02)
[5]   2-Killing vector fields on multiply warped product manifolds [J].
Blaga, Adara M. ;
Ozgur, Cihan .
CHAOS SOLITONS & FRACTALS, 2024, 180
[6]   Killing and 2-Killing Vector Fields on Doubly Warped Products [J].
Blaga, Adara M. ;
Ozgur, Cihan .
MATHEMATICS, 2023, 11 (24)
[7]  
Blaga AM, 2025, Arxiv, DOI [arXiv:2310.15814, arXiv:2310.15814, 10.48550/arXiv.2310.15814, DOI 10.48550/ARXIV.2310.15814]
[8]   Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds [J].
Calvaruso, G. .
GEOMETRIAE DEDICATA, 2007, 127 (01) :99-119
[9]   THE YAMABE FLOW ON LOCALLY CONFORMALLY FLAT MANIFOLDS WITH POSITIVE RICCI CURVATURE [J].
CHOW, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (08) :1003-1014
[10]  
Cordero L. A., 1997, Rend. Mat. Appl., V17, P129