Spatially Controlled Co-Delivery of Diagnostic and Therapeutic Agents Using DNA Nanoframeworks for Pancreatic Cancer Precision Therapy

被引:3
作者
Song, Nachuan [1 ,2 ]
Tao, Ruoyu [1 ]
Li, Hongjin [1 ]
Zhang, Rui [1 ,2 ]
Huang, Yan [1 ]
Zhang, Le [1 ]
Liu, Ying [3 ,4 ]
Yang, Dayong [1 ,2 ]
Yao, Chi [1 ]
机构
[1] Sch Chem Engn & Technol, Frontiers Sci Ctr Synthet Biol, State Key Lab Synthet Biol, Key Lab Syst Bioengn MOE, Tianjin 300350, Peoples R China
[2] Fudan Univ, Coll Chem & Mat, State Key Lab Mol Engn Polymers, Dept Chem,Shanghai Key Lab Mol Catalysis & Innovat, Shanghai 200438, Peoples R China
[3] Natl Ctr Nanosci & Technol China, CAS Key Lab Biomed Effects Nanomat & Nanosafety, Beijing 100190, Peoples R China
[4] Natl Ctr Nanosci & Technol China, CAS Ctr Excellence Nanosci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
DNA nanotechnology; Gene editing; Gene therapy; Pancreatic cancer; NANOPARTICLES; CRISPR-CAS9; PROBES;
D O I
10.1002/anie.202500566
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Theranostic platforms that integrate diagnostic and therapeutic functionalities offer promising strategies for precision medicine, particularly in the treatment of major diseases. However, the development of platforms capable of achieving spatially controlled detection and therapy at the lesion site remains a significant challenge. Herein, we present a dual-stimuli-responsive DNA nanoframework that achieve spatially controlled codelivery of molecular beacon (MB) and Cas9 ribonucleoprotein (RNP), enabling simultaneous specific optical detection and efficient gene therapy for pancreatic cancer. The DNA nanoframeworks are synthesized via precipitation polymerization, utilizing acrylamide-modified DNA to initiate a hybridization chain reaction that facilitates the effective loading of MB-extended and sgRNA-conjugated DNA hairpins. The Cas9 protein is efficiently loaded into the nanoframeworks through phase transition-induced polymer chain rearrangement, overcoming steric hindrance. Upon aptamer-mediated internalization into PANC-1 cells, the overexpressed apurinic/apyrimidinic endonuclease 1 and ribonuclease H in cancer cells induce site-specific cleave of MB and DNA-RNA hybrid duplex, respectively. This cleavage restores fluorescence for specific optical detection, whereas the released Cas9 RNP performs gene editing for efficient therapy. Low fluorescence background and favorable biocompatibility are observed in normal cells. In a pancreatic cancer mouse model, the platform demonstrates significant detection-guided antitumor efficacy, highlighting its potential for precision medicine in cancer therapy.
引用
收藏
页数:11
相关论文
共 62 条
[1]   CRISPR-Cas9 delivery strategies for the modulation of immune and non-immune cells [J].
Alsaiari, Shahad K. ;
Eshaghi, Behnaz ;
Du, Bujie ;
Kanelli, Maria ;
Li, Gary ;
Wu, Xunhui ;
Zhang, Linzixuan ;
Chaddah, Mehr ;
Lau, Alicia ;
Yang, Xin ;
Langer, Robert ;
Jaklenec, Ana .
NATURE REVIEWS MATERIALS, 2025, 10 (01) :44-61
[2]   A Facile Ion-Doping Strategy To Regulate Tumor Microenvironments for Enhanced Multimodal Tumor Theranostics [J].
Bai, Jing ;
Jia, Xiaodan ;
Zhen, Wenyao ;
Cheng, Wenlong ;
Jiang, Xiue .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (01) :106-109
[3]   Nanodiscs: a versatile nanocarrier platform for cancer diagnosis and treatment [J].
Bariwal, Jitender ;
Ma, Hairong ;
Altenberg, Guillermo A. ;
Liang, Hongjun .
CHEMICAL SOCIETY REVIEWS, 2022, 51 (05) :1702-1728
[4]   Applications of CRISPR technologies in research and beyond [J].
Barrangou, Rodolphe ;
Doudna, Jennifer A. .
NATURE BIOTECHNOLOGY, 2016, 34 (09) :933-941
[5]   Radioactive Transition Metals for Imaging and Therapy [J].
Boros, Eszter ;
Packard, Alan B. .
CHEMICAL REVIEWS, 2019, 119 (02) :870-901
[6]   Proteogenomic characterization of pancreatic ductal adenocarcinoma [J].
Cao, Liwei ;
Huang, Chen ;
Zhou, Daniel Cui ;
Hu, Yingwei ;
Lih, T. Mamie ;
Savage, Sara R. ;
Krug, Karsten ;
Clark, David J. ;
Schnaubelt, Michael ;
Chen, Lijun ;
Leprevost, Felipe da Veiga ;
Eguez, Rodrigo Vargas ;
Yang, Weiming ;
Pan, Jianbo ;
Wen, Bo ;
Dou, Yongchao ;
Jiang, Wen ;
Liao, Yuxing ;
Shi, Zhiao ;
Terekhanova, Nadezhda, V ;
Cao, Song ;
Lu, Rita Jui-Hsien ;
Li, Yize ;
Liu, Ruiyang ;
Zhu, Houxiang ;
Ronning, Peter ;
Wu, Yige ;
Wyczalkowski, Matthew A. ;
Easwaran, Hariharan ;
Danilova, Ludmila ;
Mer, Arvind Singh ;
Yoo, Seungyeul ;
Wang, Joshua M. ;
Liu, Wenke ;
Haibe-Kains, Benjamin ;
Thiagarajan, Mathangi ;
Jewell, Scott D. ;
Hostetter, Galen ;
Newton, Chelsea J. ;
Li, Qing Kay ;
Roehr, Michael H. ;
Fenyo, David ;
Wang, Pei ;
Nesvizhskii, Alexey, I ;
Mani, D. R. ;
Omenn, Gilbert S. ;
Boja, Emily S. ;
Mesri, Mehdi ;
Robles, Ana, I ;
Rodriguez, Henry .
CELL, 2021, 184 (19) :5031-+
[7]   An RNA-Cleaving DNAzyme That Requires an Organic Solvent to Function [J].
Chang, Tianjun ;
Li, Guangping ;
Chang, Dingran ;
Amini, Ryan ;
Zhu, Xiaoni ;
Zhao, Tongqian ;
Gu, Jimmy ;
Li, Zhongping ;
Li, Yingfu .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (42)
[8]   Nanochemistry and Nanomedicine for Nanoparticle-based Diagnostics and Therapy [J].
Chen, Guanying ;
Roy, Indrajit ;
Yang, Chunhui ;
Prasad, Paras N. .
CHEMICAL REVIEWS, 2016, 116 (05) :2826-2885
[9]   A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing [J].
Chen, Guojun ;
Abdeen, Amr A. ;
Wang, Yuyuan ;
Shahi, Pawan K. ;
Robertson, Samantha ;
Xie, Ruosen ;
Suzuki, Masatoshi ;
Pattnaik, Bikash R. ;
Saha, Krishanu ;
Gong, Shaoqin .
NATURE NANOTECHNOLOGY, 2019, 14 (10) :974-+
[10]   Non-invasive activation of intratumoural gene editing for improved adoptive T-cell therapy in solid tumours [J].
Chen, Xiaohong ;
Wang, Shuang ;
Chen, Yuxuan ;
Xin, Huhu ;
Zhang, Shuaishuai ;
Wu, Di ;
Xue, Yanan ;
Zha, Menglei ;
Li, Hongjun ;
Li, Kai ;
Gu, Zhen ;
Wei, Wei ;
Ping, Yuan .
NATURE NANOTECHNOLOGY, 2023, 18 (08) :933-+