Mod-p Poincare Duality in p-adic analytic geometry

被引:0
作者
Zavyalov, Bogdan [1 ,2 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Inst Adv Study, Princeton, NJ 08544 USA
关键词
rigid-analytic geometry; PoincareDuality; RIGID GEOMETRY; COHOMOLOGY; SCHEMES;
D O I
10.4007/annals.2025.201.3.2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show Poincare<acute accent> Duality for Fp-e<acute accent>tale cohomology of a smooth proper rigid-analytic space over a non-archimedean field K of mixed characteristic (0, p). It positively answers the question raised by P. Scholze in his paper "p-adic Hodge theory for rigid-analytic varieties." We prove duality via constructing Faltings' trace map relating Poincare<acute accent> Duality on the generic fiber to (almost) Grothendieck Duality on the mod-p fiber of a formal model. We also formally deduce Poincare<acute accent> Duality for Z/pnZ, Zp, and Qp-coefficients.
引用
收藏
页码:647 / 773
页数:127
相关论文
共 47 条
[1]  
Artin M., 1973, SEMINAIRE GEOMETRIE, V3
[2]   p-ADIC PERIODS AND DERIVED DE RHAM COHOMOLOGY [J].
Beilinson, A. .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 25 (03) :715-738
[3]   Smooth p-adic analytic spaces are locally contractible [J].
Berkovich, VG .
INVENTIONES MATHEMATICAE, 1999, 137 (01) :1-84
[4]  
Berkovich VG, 1993, PUBL MATH, P5
[5]  
BHATT B., 2019, lectures from the 2017 Arizona Winter School, V242, DOI [10.1090/surv/242, DOI 10.1090/SURV/242]
[6]  
Bhatt B, 2017, Lecture notes for a class on perfectoid spaces
[7]   Prisms and prismatic cohomology [J].
Bhatt, Bhargav ;
Scholze, Peter .
ANNALS OF MATHEMATICS, 2022, 196 (03) :1135-1275
[8]  
Bhatt B, 2018, PUBL MATH-PARIS, V128, P219, DOI 10.1007/s10240-019-00102-z
[9]   Specializing varieties and their cohomology from characteristic 0 to characteristic p [J].
Bhatt, Bhargav .
ALGEBRAIC GEOMETRY: SALT LAKE CITY 2015, PT 2, 2018, 97 :43-88
[10]  
BOSCH BGR84 S., 1984, Grundlehren Math. Wissen., V261