Thrombus Detection in Non-contrast Head CT Using Graph Deep Learning

被引:1
作者
Popp, Antonia [1 ,2 ]
Taubmann, Oliver [2 ]
Thamm, Florian [1 ,2 ]
Ditt, Hendrik [2 ]
Maier, Andreas [1 ]
Breininger, Katharina [3 ]
机构
[1] Friedrich Alexander Univ, Pattern Recognit Lab, Erlangen, Germany
[2] Siemens Healthineers AG, Computed Tomog, Forchheim, Germany
[3] Friedrich Alexander Univ, Dept Artificial Intelligence Biomed Engn, Erlangen, Germany
来源
BILDVERARBEITUNG FUR DIE MEDIZIN 2022 | 2022年
关键词
D O I
10.1007/978-3-658-36932-3_33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In case of an acute ischemic stroke, rapid diagnosis and removal of the occluding thrombus (blood clot) are crucial for a successful recovery. We present an automated thrombus detection system for non-contrast computed tomography (NCCT) images to improve the clinical workflow, where NCCT is typically acquired as a first-line imaging tool to identify the type of the stroke. The system consists of a candidate detection model and a subsequent classification model. The detection model generates a volumetric heatmap from the NCCT and extracts multiple potential clot candidates, sorted by their likeliness in descending order. The classification model performs reprioritization of these candidates using graph-based deep learning methods, where the candidates are no longer considered independently, but in a global context. It was optimized to classify the candidates as clot or no clot. The candidate detection model, which also serves as the main baseline, yields a ROC AUC of 79.8%, which is improved to 85.2% by the proposed graph-based classification model.
引用
收藏
页码:153 / 158
页数:6
相关论文
共 10 条
[1]   Ischaemic stroke [J].
Campbell, Bruce C., V ;
De Silva, Deidre A. ;
Macleod, Malcolm R. ;
Coutts, Shelagh B. ;
Schwamm, Lee H. ;
Davis, Stephen M. ;
Donnan, Geoffrey A. .
NATURE REVIEWS DISEASE PRIMERS, 2019, 5 (1)
[2]   Decomposing the Hounsfield Unit Probabilistic Segmentation of Brain Tissue in Computed Tomography [J].
Kemmling, A. ;
Wersching, H. ;
Berger, K. ;
Knecht, S. ;
Groden, C. ;
Noelte, I. .
CLINICAL NEURORADIOLOGY, 2012, 22 (01) :79-91
[3]  
Hamilton WL, 2018, Arxiv, DOI arXiv:1706.02216
[4]  
Loeber P, 2017, Visual Computing for Biology and Medicine
[5]   Artificial intelligence to diagnose ischemic stroke and identify large vessel occlusions: a systematic review [J].
Murray, Nick M. ;
Unberath, Mathias ;
Hager, Gregory D. ;
Hui, Ferdinand K. .
JOURNAL OF NEUROINTERVENTIONAL SURGERY, 2020, 12 (02) :156-+
[6]   Deep Learning Based Software to Identify Large Vessel Occlusion on Noncontrast Computed Tomography [J].
Olive-Gadea, Marta ;
Crespo, Carlos ;
Granes, Cristina ;
Hernandez-Perez, Maria ;
Perez de la Ossa, Natalia ;
Laredo, Carlos ;
Urra, Xabier ;
Carlos Soler, Juan ;
Soler, Alexander ;
Puyalto, Paloma ;
Cuadras, Patricia ;
Marti, Cristian ;
Ribo, Marc .
STROKE, 2020, 51 (10) :3133-3137
[7]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[8]   Development of a deep learning model to identify hyperdense MCA sign in patients with acute ischemic stroke [J].
Shinohara, Yuki ;
Takahashi, Noriyuki ;
Lee, Yongbum ;
Ohmura, Tomomi ;
Kinoshita, Toshibumi .
JAPANESE JOURNAL OF RADIOLOGY, 2020, 38 (02) :112-117
[9]   An automated detection method for the MCA dot sign of acute stroke in unenhanced CT [J].
Takahashi N. ;
Lee Y. ;
Tsai D.-Y. ;
Matsuyama E. ;
Kinoshita T. ;
Ishii K. .
Radiological Physics and Technology, 2014, 7 (1) :79-88
[10]   A Convolutional Neural Network for Anterior Intra-Arterial Thrombus Detection and Segmentation on Non-Contrast Computed Tomography of Patients with Acute Ischemic Stroke [J].
Tolhuisen, Manon L. ;
Ponomareva, Elena ;
Boers, Anne M. M. ;
Jansen, Ivo G. H. ;
Koopman, Miou S. ;
Barros, Renan Sales ;
Berkhemer, Olvert A. ;
van Zwam, Wim H. ;
van der Lugt, Aad ;
Majoie, Charles B. L. M. ;
Marquering, Henk A. .
APPLIED SCIENCES-BASEL, 2020, 10 (14)