Atmospheric infrasound disturbances during the large 2013 May 22 solar energetic particle event

被引:0
作者
Ivantyshyn, O. [1 ]
Chernogor, L. [2 ]
Ivantyshyn, D. [3 ]
Rusyn, B. [1 ]
Lozynskyy, A. [1 ]
Melnyk, M. [4 ,5 ]
机构
[1] NAS Ukraine, Karpenko Physicomech Inst, UA-79060 Lvov, Ukraine
[2] Kharkov Natl Univ, UA-61022 Kharkiv, Ukraine
[3] Lviv Polytech Natl Univ, Inst Comp Sci & Informat Technol, UA-79000 Lvov, Ukraine
[4] NAS Ukraine, Lviv Ctr Inst space Res, UA-79060 Lvov, Ukraine
[5] SSA Ukraine, UA-79060 Lvov, Ukraine
关键词
Solar energetic particle event; Coronal mass ejections; Atmospheric infrasound; Decameter radio emission; Infrasound generation mechanism; Time delay; AUGUST; 4; PARAMETERS; EXPLOSION; GEOSPACE; DYNAMICS; BEIRUT; CITY;
D O I
10.1016/j.jastp.2025.106547
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The paper presents research on atmospheric infrasound disturbances during large solar energetic particle event on 2013 May 22. This event is remarkable for its interacting coronal mass ejections, which caused a high level of particle intensity, that reached the value of 2740 cm(-2)s(-1)sr(-1) in the >1 MeV GOES energy channel respectively according to NOAA GOES data. The maximum energetic particle flux occurred at 08:20 UT on 05/23/2013 and about three hours after that, we registered the beginning of the daily cycle disturbance of natural atmospheric infrasound with a duration of up to 2 days and an increase in the magnitude of infrasound by similar to 3 divided by 4 times. A probable mechanism of infrasound generation is proposed. The observed value of the time delay of infrasound arrival in relation to the moment of generation of energetic protons consists mainly of the infrasound propagation time from high latitudes to the observatory and is counted from the moment the peak flux of lower-energy protons arrives. It is found that before the disturbance, the spectrum of the atmospheric infrasound signal was dominated by oscillations with a period of T approximate to 300 s, while after the disturbance, the width of the infrasound frequency spectrum increased and oscillations with periods of T approximate to 100 divided by 230 s became dominant. The correlation of the proton flux density and the infrasound amplitude with the electric field strength in the surface atmosphere is revealed and explained.
引用
收藏
页数:8
相关论文
共 32 条
[1]   Properties of High-Energy Solar Particle Events Associated with Solar Radio Emissions [J].
Ameri, Dheyaa ;
Valtonen, Eino ;
Pohjolainen, Silja .
SOLAR PHYSICS, 2019, 294 (09)
[2]   Solar energetic particles in the inner heliosphere: status and open questions [J].
Anastasiadis, Anastasios ;
Lario, David ;
Papaioannou, Athanasios ;
Kouloumvakos, Athanasios ;
Vourlidas, Angelos .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2019, 377 (2148)
[3]   Infrasound Observations of Atmospheric Disturbances Due to a Sequence of Explosive Eruptions at Mt. Shinmoedake in Japan on March 2018 [J].
Batubara, Mario ;
Yamamoto, Masa-yuki .
REMOTE SENSING, 2020, 12 (04)
[4]   Toward an Improved Representation of Middle Atmospheric Dynamics Thanks to the ARISE Project [J].
Blanc, E. ;
Ceranna, L. ;
Hauchecorne, A. ;
Charlton-Perez, A. ;
Marchetti, E. ;
Evers, L. G. ;
Kvaerna, T. ;
Lastovicka, J. ;
Eliasson, L. ;
Crosby, N. B. ;
Blanc-Benon, P. ;
Le Pichon, A. ;
Brachet, N. ;
Pilger, C. ;
Keckhut, P. ;
Assink, J. D. ;
Smets, P. S. M. ;
Lee, C. F. ;
Kero, J. ;
Sindelarova, T. ;
Kampfer, N. ;
Rufenacht, R. ;
Farges, T. ;
Millet, C. ;
Nasholm, S. P. ;
Gibbons, S. J. ;
Espy, P. J. ;
Hibbins, R. E. ;
Heinrich, P. ;
Ripepe, M. ;
Khaykin, S. ;
Mze, N. ;
Chum, J. .
SURVEYS IN GEOPHYSICS, 2018, 39 (02) :171-225
[5]   Solar Energetic Particle Events Observed by the PAMELA Mission [J].
Bruno, A. ;
Bazilevskaya, G. A. ;
Boezio, M. ;
Christian, E. R. ;
de Nolfo, G. A. ;
Martucci, M. ;
Merge, M. ;
Mikhailov, V. V. ;
Munini, R. ;
Richardson, I. G. ;
Ryan, J. M. ;
Stochaj, S. ;
Adriani, O. ;
Barbarino, G. C. ;
Bellotti, R. ;
Bogomolov, E. A. ;
Bongi, M. ;
Bonvicini, V ;
Bottai, S. ;
Cafagna, F. ;
Campana, D. ;
Carlson, P. ;
Casolino, Is M. ;
Castellini, G. ;
De Santis, C. ;
Di Felice, V ;
Galperg, A. M. ;
Karelin, A., V ;
Koldashov, S., V ;
Koldobskiy, S. ;
Krutkov, S. Y. ;
Kvashnin, A. N. ;
Leonov, A. ;
Malakhov, V ;
Marcelli, L. ;
Mayorov, A. G. ;
Menn, W. ;
Mocchiutti, E. ;
Monaco, A. ;
Mori, N. ;
Osteria, G. ;
Panico, B. ;
Papini, P. ;
Pearce, M. ;
Picozza, P. ;
Ricci, M. ;
Ricciarini, S. B. ;
Simon, M. ;
Sparvoli, R. ;
Spillantini, P. .
ASTROPHYSICAL JOURNAL, 2018, 862 (02)
[6]   Physical Effects in the Atmosphere and Geospace Accompanying the Surface Explosion in the City of Beirut on August 4, 2020: Observational Data [J].
Chernogor, L. F. ;
Garmash, K. P. .
KINEMATICS AND PHYSICS OF CELESTIAL BODIES, 2021, 37 (04) :183-192
[7]   Physical Effects in the Atmosphere and Geospace due to Ground-Based Events as Exemplified by the Explosion in the City of Beirut on August 4, 2020. Theoretical Modeling Results [J].
Chernogor, L. F. .
KINEMATICS AND PHYSICS OF CELESTIAL BODIES, 2021, 37 (03) :121-134
[8]   Parameters of the Infrasonic Signal Generated by the Kamchatka Meteoroid [J].
Chernogor, L. F. ;
Liashchuk, O. I. ;
Shevelev, M. B. .
KINEMATICS AND PHYSICS OF CELESTIAL BODIES, 2020, 36 (05) :222-237
[9]   Statistical Analysis of Infrasonic Parameters Generated by the Chelyabinsk Meteoroid [J].
Chernogor, L. F. .
KINEMATICS AND PHYSICS OF CELESTIAL BODIES, 2020, 36 (04) :171-185
[10]   Characteristics of Infrasonic Signals Generated by the Lipetsk Meteoroid: Statistical Analysis [J].
Chernogor, L. F. ;
Shevelev, M. B. .
KINEMATICS AND PHYSICS OF CELESTIAL BODIES, 2020, 36 (04) :186-194