Internal solitary and cnoidal waves of moderate amplitude in a two-layer fluid: the extended KdV equation approximation

被引:0
作者
Sidorovas, Nerijus [1 ]
Tseluiko, Dmitri [1 ]
Choi, Wooyoung [2 ]
Khusnutdinova, Karima [1 ]
机构
[1] Loughborough Univ, Dept Math Sci, Loughborough LE11 3TU, England
[2] New Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
Internal wave; Extended kdV equation; Solitary wave; Cnoidal wave; LONG NONLINEAR-WAVES;
D O I
10.1016/j.physd.2025.134723
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider travelling internal waves in a two-layer fluid with linear shear currents from the viewpoint of the extended Korteweg-de Vries (eKdV) equation derived from a strongly-nonlinear long-wave model. Using an asymptotic Kodama-Fokas-Liu near-identity transformation, we map the eKdV equation to the Gardner equation. This improved Gardner equation has a different cubic nonlinearity coefficient and an additional transport term compared to the frequently used truncated Gardner equation. We then construct approximate solitary and cnoidal wave solutions of the eKdV equation using this mapping and test validity and performance of these approximations, as well as performance of the truncated and improved Gardner and eKdV equations, by comparison with direct numerical simulations of the strongly-nonlinear two-layer long-wave parent system in the absence of currents.
引用
收藏
页数:19
相关论文
共 39 条
[21]   Dynamics of strongly nonlinear internal solitary waves in shallow water [J].
Jo, TC ;
Choi, W .
STUDIES IN APPLIED MATHEMATICS, 2002, 109 (03) :205-227
[22]   Undular bore theory for the Gardner equation [J].
Kamchatnov, A. M. ;
Kuo, Y. -H. ;
Lin, T. -C. ;
Horng, T. -L. ;
Gou, S. -C. ;
Clift, R. ;
El, G. A. ;
Grimshaw, R. H. J. .
PHYSICAL REVIEW E, 2012, 86 (03)
[23]   Shallow-water soliton dynamics beyond the Korteweg-de Vries equationl [J].
Karczewska, Anna ;
Rozmej, Piotr ;
Infeld, Eryk .
PHYSICAL REVIEW E, 2014, 90 (01)
[24]   Soliton solutions to the fifth-order Korteweg-de Vries equation and their applications to surface and internal water waves [J].
Khusnutdinova, K. R. ;
Stepanyants, Y. A. ;
Tranter, M. R. .
PHYSICS OF FLUIDS, 2018, 30 (02)
[25]   ON INTEGRABLE SYSTEMS WITH HIGHER-ORDER CORRECTIONS [J].
KODAMA, Y .
PHYSICS LETTERS A, 1985, 107 (06) :245-249
[26]   NORMAL FORMS FOR WEAKLY DISPERSIVE WAVE-EQUATIONS [J].
KODAMA, Y .
PHYSICS LETTERS A, 1985, 112 (05) :193-196
[27]   AN INVESTIGATION OF INTERNAL SOLITARY WAVES IN A 2-FLUID SYSTEM [J].
KOOP, CG ;
BUTLER, G .
JOURNAL OF FLUID MECHANICS, 1981, 112 (NOV) :225-251
[28]   GENERATION OF LONG NONLINEAR INTERNAL WAVES IN A WEAKLY STRATIFIED SHEAR-FLOW [J].
LEE, CY ;
BEARDSLEY, RC .
JOURNAL OF GEOPHYSICAL RESEARCH, 1974, 79 (03) :453-462
[29]  
Maltseva Z.L., 1989, Din. Sploshn. Sredy, V93, P96
[30]   An undular bore solution for the higher-order Korteweg-de Vries equation [J].
Marchant, T. R. ;
Smyth, N. F. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (37) :L563-L569